Dr Caroline Leaf and the law of great power

Screen Shot 2014-12-05 at 12.37.55 am

Tonight as I was flicking through Facebook one last time, a post caught my eye. It read,

“The thought you are thinking right now is impacting every single one of the 75-100 trillion cells in your brain and body at quantum speeds”

Dr Leafs social media gem gave me an eerie sense of deja vu. It was only the end of October when she posted the same factoid on social media. Today’s version has been tweaked slightly, although in all fairness, I can’t describe it as an upgrade.

Dr Caroline Leaf is a communication pathologist and self-titled cognitive neuroscientist. On the 23rd of October 2014, she posted this on her social media stream, “Every thought you think impacts every one of the 75-100 trillion cells in your body at quantum speeds!”

On comparing the pair, Dr Leaf has added “brain” into the number of cells under the influence, and then massaged the opening slightly. I already had significant concern about the scientific validity of the previous meme in October. That hasn’t changed. Rather than improving the accuracy of her meme, Dr Leaf’s changes have left it missing the mark.

The fundamental fallacy that thoughts are the main controlling influence on our brain is still there. Thought is simply a conscious projection of one part of the overall function of our brain. Our brains function perfectly well without thought. Thought, on the other hand, doesn’t exist without the brain. Our brain cells influence our thoughts, not the other way around.

The myth of “quantum speeds” is still there. Our neurones interact with each other via electrochemical mechanisms. Like all other macroscopic objects, our brains follow the laws of classical physics. It’s not that quantum physics doesn’t apply to our brains, because quantum mechanics applies to all particles, but if you think you can explain macroscopic behaviour using quantum physics, then you should also try and explain Schrodingers Cat (see also chapter 13 of my book [1] for a longer discussion on quantum physics). Dr Leaf is particularly brave to make such bold statements about quantum physics when even quantum physicists find it mysterious.

What made me slightly embarrassed for Dr Leaf is the new part of her statement. In my blog on Dr Leaf’s previous attempt at this meme, I pointed out that Dr Leaf’s estimate of the number of cells in our body was more than three times that of the estimate of scientists at the Smithsonian (http://www.smithsonianmag.com/smart-news/there-are-372-trillion-cells-in-your-body-4941473/?no-ist). The fact that Dr Leaf so badly estimated, when all she needed to do was a one line Google search, suggested that she just made the number up. Failing to cite her source eroded at her credibility as a scientist.

Today, Dr Leaf still claims that there are 75-100 trillion cells in the brain and the body. The Smithsonian still hasn’t changed its estimate. Dr Leaf still hasn’t cited her source, and has ignored a world-renowned scientific institution. Perhaps Dr Leaf believes she knows more than the scientists at the Smithsonian? Perhaps she has a better reference? We’ll never know unless she cites it.

Taken as a whole, her meme is no closer to the truth than it was six weeks ago. Some may ask if it really matters. “Who cares if we have 37.2 trillion cells or 100 trillion cells or even 100 billion trillion”. “So what if our thoughts influence us or not.” If this was just a matter of a pedantic argument between some scientists over a coffee one morning,then I’d agree, it wouldn’t be so important. But Dr Leaf claims to be an expert, and more than 100,000 people read her memes on Facebook and many more on Twitter, Instagram, and the various other forms of social media she is connected to. Nearly every one of those people take Dr Leaf at her word. Ultimately the issue is trust.

If Dr Leaf can misreport such a simple, easily sourced fact, and not just once but twice now, then what does that mean for her other factoids and memes that she regularly posts on social media? If Dr Leaf incorrectly says that every thought we think impacts every cell in our body, then hundreds of thousands of people are wasting their mental and physical energy on trying to control their thoughts when it makes no real difference, and if anything might make their mental health worse [2, 3].

This is more than just a pedantic discussion over a trivial fact.  These memes matter to people, and can potentially influence the health and wellbeing of many thousands of lives.

Peter Parker, quoting Voltaire, said, “With great power comes great responsibility.”  Just because Spiderman said it doesn’t diminish the profundity of that statement.  This law of great power applies to Dr Leaf as much as it does to Spiderman.  I hope and pray that she gives this law of great power the consideration it deserves.

References

  1. Pitt, C.E., Hold That Thought: Reappraising the work of Dr Caroline Leaf, 2014 Pitt Medical Trust, Brisbane, Australia, URL http://www.smashwords.com/books/view/466848
  2. Garland, E.L., et al., Thought suppression, impaired regulation of urges, and Addiction-Stroop predict affect-modulated cue-reactivity among alcohol dependent adults. Biol Psychol, 2012. 89(1): 87-93 doi: 10.1016/j.biopsycho.2011.09.010
  3. Kavanagh, D.J., et al., Tests of the elaborated intrusion theory of craving and desire: Features of alcohol craving during treatment for an alcohol disorder. Br J Clin Psychol, 2009. 48(Pt 3): 241-54 doi: 10.1348/014466508X387071

Dr Caroline Leaf and the cart before the horse, take two

Screen Shot 2014-12-01 at 8.23.44 pm

In between her sightseeing in the UK and ballet concerts in the Ukraine, Dr Leaf, communication pathologist and self-titled cognitive neuroscientist, took the time to post some more memorable memes.

Today, Dr Leaf posted, “A chaotic mind filled with thoughts of anxiety, worry, etc. sends out the wrong signal right down to the level of our DNA.”

Hmmm, that one looked familiar … actually, Dr Leaf posted the exact same phrase on the 5th of October this year.  I’m all for recycling, but of renewable resources, not tired ideas.

This meme has been soundly rebuffed before, and the idea that the mind controls our DNA has been thoroughly dismantled.  Reposting it won’t make it any truer.

This meme is better off being put into the trash than the recycling bin.

(For more information on the rebuttal of the mind over matter meme, see also “Hold that thought: Reappraising the work of Dr Caroline Leaf“, “Dr Caroline Leaf: Putting thought in the right place” Part 1 and Part 2, “Dr Caroline Leaf and the matter of mind over genes“, “Dr Caroline Leaf, Dualism, and the Triune Being Hypothesis”, “Dr Caroline Leaf and the Myth of the Blameless Brain” and “Dr Caroline Leaf and the Myth of Mind Domination” just to name a few references).

Dr Caroline Leaf and the organic foods fallacy

Screen Shot 2014-11-28 at 1.13.59 am

Organic foods. They are amazingly popular. More than a million Australians buy organic foods regularly, and several million more buy it occasionally. The retail value of the organic market is estimated to be more than $1 billion annually. The assumption made by most people is that because it’s so popular, organic foods must be good for you, or at least have something going for them to make them worth all the hype.

Of course, just because something’s immensely popular and has a billion-dollar turnover doesn’t necessarily mean it’s beneficial (One Direction is a case-in-point).

In fact, despite organic foods being touted by their supporters as healthier, safer, and better for the environment than normal foods, actual scientific evidence fails to show any significant difference. I wrote about this earlier in the year (see: Borderline Narcissism and Organic Food). Since then, another large prospective trial deflated organic food’s bubble, with a British study showing no change in the incidence of cancer in women who always ate organic foods versus those who never ate organic foods [1].

The dearth of benefit from organic foods wouldn’t be so bad if they were just another guy in the line-up, something neutral and inert. Unfortunately, not only can organic produce be contaminated if farmed incorrectly [2, 3], but they come at an extraordinary premium, sometimes costing four times more than their conventional counterparts (Borderline Narcissism and Organic Food).

Dr Caroline Leaf is a communication pathologist and a self-titled cognitive neuroscientist. A couple of months ago, she let slip her intention to publish a book in 2015 about food. Who knows what she’ll actually say, but if today’s social media meme is anything to go by, it will likely follow the same pattern of her other teachings.

Today, she wrote, “Research shows that dark organic CHOCOLATE lowers blood pressure, improves circulation, increase HDL (“good”) cholesterol, reduce the risk of heart attack and stroke, and increases insulin … and … recent research has even suggest it may prevent weight gain!”

As I discussed recently, Dr Leaf does herself a disservice by not citing her sources. It’s very brave to write in a public forum that dark chocolate reduces the heart attack and stroke, since this could be interpreted as medical advice, which she is not qualified to give. As for the actual effects of dark chocolate, there is not a lot of quality evidence on dark chocolate on its own. A 2011 meta-analysis of general chocolate consumption on cardiovascular risk did indeed show a relative risk reduction of 37% [4]. But before you prescribe yourself two dark chocolate Lindt balls twice a day, consider that a relative risk reduction of 37% isn’t a big effect. Plus, the recommended 50 grams of 85% organic dark chocolate to attain the small benefit for your cardiovascular health contains just over 300 calories/1280 kJ (the average can of Coke contains 146 calories/ 600 kJ), and is 30% saturated fat (http://caloriecount.about.com/calories-green-blacks-organic-dark-chocolate-i110689). So any health benefit that may be associated with the poly-phenol content is likely nullified by the high saturated fat and calorie count.

What concerns me about Dr Leaf’s future foray into dietetics is that little word sitting quietly in her opening sentence: “organic”. Dr Leaf is an organic convert. But rather than act like a scientist that she claims to be, she preaches from her biases, ignoring the evidence that organic food is all hype and no substance, encouraging Christians everywhere to pay excessive amounts of money for something that’s of absolutely no benefit. Dr Leaf is welcome to eat whatever she chooses, but encouraging organic eating without clear benefit is more hindrance than help for most of her followers.

References

  1. Bradbury, K.E., et al., Organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. Br J Cancer, 2014. 110(9): 2321-6 doi: 10.1038/bjc.2014.148
  2. Mukherjee, A., et al., Association of farm management practices with risk of Escherichia coli contamination in pre-harvest produce grown in Minnesota and Wisconsin. Int J Food Microbiol, 2007. 120(3): 296-302 doi: 10.1016/j.ijfoodmicro.2007.09.007
  3. Sample, I., E coli outbreak: German organic farm officially identified. The Guardian, London, UK, 11 June 2011 http://www.theguardian.com/world/2011/jun/10/e-coli-bean-sprouts-blamed
  4. Buitrago-Lopez, A., et al., Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. BMJ, 2011. 343: d4488 doi: 10.1136/bmj.d4488

Dr Caroline Leaf and the tongues trivia tall tales

Screen Shot 2014-11-12 at 9.29.17 pm

In every day life, if someone started talking in strings of indecipherable, chaotic syllables, you’d be giving them quite a lot of space, concerned about how much methamphetamine they’d been using.

In the average charismatic church, it’s just another service (the speaking in tongues, not the meth).

I’ve grown up in Pentecostal churches, and was baptised in the Holy Spirit when I was a child, so I forget how freaky it is for those who’ve never seen a whole church start talking or singing in tongues. For the uninitiated, the Bible talks about speaking in other tongues, which is a “New Testament phenomena where a person speaks in a language that is unknown to him. This language is either the language of angels or other earthly languages (1 Cor. 13:1). It occurred in Acts 2 at Pentecost and also in the Corinthian church as is described in 1 Corinthians 14. This New Testament gift was given by the Holy Spirit to the Christian church and is for the purpose of the edification of the Body of Christ as well as for glorifying the Lord.” (http://carm.org/speaking-in-tongues)

In scientific terms, speaking in tongues is referred to as “Glossolalia”, from the Greek, ‘glosso-‘ ~ ‘the tongue’ and ‘-lalia’ ~ ‘to speak, to chat’. Scientists who initially studied it in the 60’s and 70’s drew the conclusion that glossolalia was related to psychopathology (that people who spoke in tongues were crazy) [1, 2], and in later decades, it was thought to be caused by a form of temporal lobe epilepsy [3].

Earlier today, Dr Caroline Leaf, a communication pathologist and self-titled cognitive neuroscientist, declared that, “When we speak in tongues, research shows that the areas involved in discernment in the brain increase in activity, which means we increase in wisdom.”

I was fascinated to find this research for myself. Dr Leaf never references her social media memes, so I started looking through the medical literature on the subject from respected databases like PubMed, and search engines like Google Scholar.

Despite a thorough search, I was only able to find one article that studied the pattern of brain activity during speaking in tongues. The article, “The measurement of regional cerebral blood flow during glossolalia: A preliminary SPECT study” [4] took five healthy women, psychiatrically stable, long term members of their churches, who had all spoken in tongues for many years. They scanned their brain activity after a period of singing to gospel songs in English and compared it to their brain activity after the same amount of time praying in tongues (while listening to the same music as before).

What they found was that the brain was more active in the left superior parietal lobe, while there was a decrease in brain activity in the prefrontal cortices, left caudate nucleus and left temporal pole. There was a trend for an increase in the activity of the right amygdala, but this may have just been chance.

So are any of those brain regions responsible for discernment as Dr Leaf suggested?

Well, that all depends on how you define “discernment”. “Discernment” is not really a common neurobiological term. The standard term in the literature is “judgement”. The brain regions that are associated with evaluation and judgement are the amygdala and ventral portions of the striatum as well as the ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex (OFC), the insula, the dorsal anterior cingulate cortex (dACC), and the periaqueductal gray (PAG) [5].

Are there any parts of the brain that match in the two lists? Only one – the ventromedial prefrontal cortex, or vmPFC for short. The prefrontal cortex is important in reasoning and decision-making, especially if there is uncertainty or novelty, while the vmPFC in particular is involved in the use of goal-relevant information in guiding responses, e.g., assigning value to choice options [6].

According to Dr Leaf, “When we speak in tongues, research shows that the areas involved in discernment in the brain increase in activity”. But that’s certainly not what the research paper said. The actual research is entirely the opposite.

Again, there are really only two reasonable explanations as to why the research contradicts Dr Leaf; either there is another piece of research which supports Dr Leaf’s assertion, or Dr Leaf is simply wrong.

At the risk of repeating myself, Dr Leaf needs to quote her sources when she is writing her little social media memes. Her meme may be perfectly justified by robust scientific evidence, but if she isn’t willing to share her sources, we’ll never know, and the only conclusion remaining is that Dr Leaf can’t interpret simple research.

So as it stands, there really isn’t any evidence that speaking in tongues makes you more discerning. By trying to claim otherwise, Dr Leaf further undermines her own reputation and credibility as an expert.

References

  1. Hine, V.H., Pentecostal glossolalia: towards a functional reinterpretation. Journal for the Scientific Study of Religion, 1969. 8: 212-26
  2. Brende, J.O. and Rinsley, D.B., Borderline disorder, altered states of consciousness, and glossolalia. J Am Acad Psychoanal, 1979. 7(2): 165-88 http://www.ncbi.nlm.nih.gov/pubmed/370074
  3. Persinger, M.A., Striking EEG profiles from single episodes of glossolalia and transcendental meditation. Perceptual and Motor Skills, 1984. 58: 127-33
  4. Newberg, A.B., et al., The measurement of regional cerebral blood flow during glossolalia: a preliminary SPECT study. Psychiatry Res, 2006. 148(1): 67-71 doi: 10.1016/j.pscychresns.2006.07.001
  5. Doré, B.P., et al., Social cognitive neuroscience: A review of core systems, in APA Handbook of Personality and Social Psychology, Mikulincer, M., et al., (Eds). 2014, American Psychological Association: Washington, DC. p. 693-720.
  6. Nicolle, A. and Goel, V., What is the role of ventromedial prefrontal cortex in emotional influences on reason?, in Emotion and Reasoning, Blanchette, I., (Ed). 2013, Psychology Press.

STOP THE PRESSES! Dr Leaf releases a new meme based on my correction, still doesn’t acknowledge source. (13 November 2014)

Screen Shot 2014-11-13 at 8.08.23 am

 

So, I can’t find fault on what Dr Leaf said here.  It fits with the paper I quoted from Newberg et al (2006).  Still, it begs the question of why Dr Leaf couldn’t have said this in the first place, and why she still isn’t willing to share her citations?

It also raises the other obvious question, why is it important to know what our brain does in glossolalia?  It’s only a study of 5 patients, and I’m sure that not all episodes of speaking in tongues is associated with decreased intentionality.  The research, being so small, isn’t a true reflection of the practice of speaking in tongues.  Lets hope that the future will bring more funding to better study this central tenet to the charismatic faith.

Dr Caroline Leaf: Putting thought in the right place

Following hard on the heels of her false assumption that our minds control our health, not our genes, and following the same theme, Dr Leaf had this to say today, “Everything is first a thought; the brain is being controlled with EVERY thought you think!”

Dr Caroline Leaf is a communication pathologist and a self-titled cognitive neuroscientist. Reading back through my blogs, this “thought controls the brain / mind controls matter” is a recurrent theme of hers. It is repeated multiple times in her books, like when she writes, “Thoughts influence every decision, word, action and physical reaction we make.” [1: p13] and “Our mind is designed to control the body, of which the brain is a part, not the other way around. Matter does not control us; we control matter through our thinking and choosing” [2: p33] just as a couple of examples.

So how does thought relate to the grand scheme of our brain and it’s processing? Does our thought really control our brain, or is it the other way around. Through all of the reading that I have done on neuroscience, I propose a model of the place of thought in relation to the rest of our brains information processing. It is based on the LIDA model, dual systems models, and other neuroscientific principles and processes.

We’ve all heard the phrase, “It’s just the tip of the iceberg.” It comes from the fact that icebergs are made of fresh water, which is nine-tenths less dense than seawater. As a result, ten percent of an iceberg sits above the waters surface with most of it hiding beneath.

The information processing of our brains is much the same. We may be aware of our conscious stream of thought, but there is a lot going on under the surface that makes our thoughts what they are, even though we can’t see the process underneath.

What’s going on under the surface is a complex interplay of our genes and their expression which controls the structure and function of our brains, which effects how we perceive information, how we process that information and combine it into our memories of the past, predictions of the future, and even the further perception of the present [3].

CAP v2.1.2
Genes, epigenetics and the environment
We start with the most fundamental level of our biological system, which is genetics. It becomes clear from looking at any textbook of biological sciences that genes are fundamental to who we are. From the simplest bacteria, fungi, protozoans and parasites, through to all plants, all animals and all of human kind – EVERY living thing has DNA. DNA is what defines life in the broadest sense.

Proteins are responsible for the size, shape and operation of the cell. They make each tissue structurally and functionally different, but still work together in a highly precise electrochemical synchrony. But ultimately, it’s our genes that hold all of the instructions to make every one of the proteins within our cells. Without our genes, we would be nothing more than a salty soup of random amino acids.

Epigenetics and the environment contribute to the way genes are expressed. Epigenetics are “tags” on the strand of DNA that act to promote or silence the expression of certain genes (I discuss this in more detail in chapter 12 of my book, https://www.smashwords.com/books/view/466848). Environmental factors (the components that make up the world external to our bodies) can influence genes and epigenetic markers. The environment can cause genetic mutations or new epigenetic marks that change the function of a particular gene, and depending on which cell they effect (a very active embryonic cell or a quiet adult cell) will largely determine the eventual outcome. The environment is more influential to our genetic expression than epigenetics.

Still, on average only about 25% of the expression of a complex trait is related to environmental factors. So while the environment is important, it is still outdone 3:1 by our genome.

Yes, epigenetics and the environment are important, but they influence, not control, the genome.

Perception
We live in a sensory world. The five senses are vital in providing the input we need for our brain to understand the world and meaningfully interact with it.

Different organs are needed to translate the optical, chemical or mechanical signals into electrical signals. Different parts of our brain then interpret these signals and their patterns.

Our genes significantly influence this process. For example, if someone is born with red-green colour blindness then how he or she interprets the world will always be subtly different to someone with normal vision. Or a person born with congenital deafness will always interpret his or her environment in a different way to someone with full hearing. I’ve highlighted these two conditions because they provide stark examples to help demonstrate the point, but there are many unique genetic expressions in each of the five senses that subtly alter the way each of us perceives the world around us.

So while we may all have the same photons of light hitting our retinas, or the same pressure waves of sound reaching our ears or touch on our skin, how our brains receive that information is slightly different for every individual. The information from the outside world is received by our sensory organs, but it is perceived by our brain, and even small differences in perception can have a big impact on the rest of the system.

Personality
Personality is “the combination of characteristics or qualities that form an individual’s distinctive character” [4]. Formally speaking, personality is, “defined as constitutionally based tendencies in thoughts, behaviors, and emotions that surface early in life, are relatively stable and follow intrinsic paths of development basically independent of environmental influences.” [5]

Professor Gregg Henriques explained it well in Psychology Today, “Personality traits are longstanding patterns of thoughts, feelings, and actions which tend to stabilize in adulthood and remain relatively fixed. There are five broad trait domains, one of which is labeled Neuroticism, and it generally corresponds to the sensitivity of the negative affect system, where a person high in Neuroticism is someone who is a worrier, easily upset, often down or irritable, and demonstrates high emotional reactivity to stress.” [6] The other four personality types are Extraversion, Agreeableness, Conscientiousness, and Openness to Experience.

Gene x environment studies suggest that personality is highly heritable, with up to 60% of personality influenced by genetics [7], predominantly through genes involved in the serotonin [8] and dopamine systems [9, 10]. The “non-shared environment” (influences outside of the home environment) contributes heavily to the remainder [11, 12].

Personality is like a filter for a camera lens, shaping the awareness of our emotional state for better or worse, thus influencing the flow on to our feelings (the awareness of our emotions), our thoughts, and our actions.

Physiology
Watkins describes physiology as streams of data that are provided from the different parts of your body, like the heart rate, your breathing rate, the oxygen in your blood, the position of your joints, the movement of your joints, even the filling of your bladder telling you that you need a break soon.

All of these signals are constantly being generated, and collated in different parts of the brain. Some researchers consider them positive and negative depending on the data stream and the signal its providing. They coalesce into emotion [13].

Emotion
According to Watkins, “emotion” is the sum of all the data streams of physiology, or what he described as “E-MOTIONEnergy in MOTION.” [13] In this context, think of emotion as a bulls-eye spirit-level of our body systems. The different forces of our physiology change the “level” constantly in different directions. Emotion is the bubble that marks the central point, telling us how far out of balance we are.

In the interest of full disclosure, I should mention that although emotion is a familiar concept, the work of literally thousands of brilliant minds has brought us no closer to a scientifically validated definition of the word “emotion”. Some psychologists and researchers consider it vague and unscientific, and would prefer that it not be used altogether [14].

I’ve retained it because I think it’s a well-recognised word that conceptually describes the balance of physiological forces.

Feelings
“Feelings” are the perception of emotion.

I discussed earlier in the chapter that what we perceive is different to what we “see” because the subtle genetic differences in our eyes and brains causes the information to be processed differently between individuals. The same applies to the perception of our emotion.

As I wrote earlier, personality is largely determined by our genetics with contributions from our environment [11, 12]. The emotional signal is filtered by our personality to give rise to our feelings. Classically, an optimistic personality is going to bias the emotional input in a positive, adaptive way while a pessimist or neurotic is going to bias the emotional signal in a maladaptive way

That’s not to say that an optimist can’t have depressed feelings, or a neurotic can’t have happy feelings. In the same way that a coloured lens will allow a lot of light through but filter certain wavelengths out, most of our emotional state of being will come through the filter of our personality but the feelings will be subtly biased one way or another.

Executive Functions
Executive function of the brain is defined as a complex cognitive process requiring the co-ordination of several sub-processes to achieve a particular goal [15]. These sub-processes can be variable but include working memory, attention, goal setting, maintaining and monitoring of goal directed action and action inhibition. In order to achieve these goals, the brain requires flexibility and coordination of a number of networks and lobes, although mainly the prefrontal cortex, parietal cortex, anterior cingulate and basal ganglia, and the while matter tracts that connect them.

Executive functions process the incoming information and decide on what goals are best given the context, then plan the goals, execute them to the motor cortices, and monitor the action. Research work from Marien et al [16] demonstrates that unconscious/implicit goals can divert resources away from conscious goals especially if it is emotionally salient or otherwise strongly related. They also confirm that conscious awareness is not necessary for executive function but that implicit goals can be formed and executed without conscious involvement.

Thoughts
Thoughts are essentially a stream of data projected into our conscious space. Baars [17, 18] noted that the conscious broadcast comes into working memory which then engages a wider area of the cerebral cortex necessary to most efficiently process the information signal. We perceive thought most commonly as either pictures or sounds in our head (“the inner monologue”), which corresponds to the slave systems of working memory. When you “see” an image in your mind, that’s the visuospatial sketchpad. When you listen to your inner monologue, that’s your phonological loop. When a song gets stuck in your head, that’s your phonological loop as well, but on repeat mode.

There is another slave system that Baddeley included in his model of working memory called the episodic buffer, “which binds together complex information from multiple sources and modalities. Together with the ability to create and manipulate novel representations, it creates a mental modeling space that enables the consideration of possible outcomes, hence providing the basis for planning future action.” [19]

Deep thinking is a projection from your brains executive systems (attention or the default mode network) to the central executive of working memory, which then recalls the relevant information from long-term memory and directs the information through the various parts of the slave systems of working memory to process the complex details involved. For example, visualizing a complex scene of a mountain stream in your mind would involve the executive brain directing the central executive of working memory to recall information about mountains and streams and associated details, and project them into the visuospatial sketchpad and phonological loop and combine them via the episodic buffer. The episodic buffer could also manipulate the scene if required to create plans, or think about the scene in new or unexpected ways (like imagining an elephant riding a bicycle along the riverbank).

Even though the scene appears as one continuous episode, it is actually broken up into multiple cognitive cycles, in the same way that images in a movie appear to be moving, but are really just multiple still frames played in sequence.

Action
Action is the final step in the process, the output, our tangible behaviour

Our behaviour is not the direct result of conscious thought, or our will (as considered in the sense of our conscious will).

We discussed this before when we talked about our choices in chapter 1. There are two main pathways that lead from sensory input to tangible behaviour – various automated pathways that take input from the thalamus, deep in the brain, and sent to motor circuits in the supplementary motor area and motor cortex of the brain. These can be anything from evasive “reflex” actions[1] to rehearsed, habituated motor movements, like driving. Then there is the second pathway, coming from the executive areas of our brain, that plan out options for action, which are reviewed by the pre-supplemental motor area and the default mode network.

This second pathway is amenable to conscious awareness. Like thought, the projection of different options for action into our consciousness helps to engage a wider area of cerebral cortex to process the data. Most of the possible plans for action have already been rejected by the implicit processing of our executive brain before consciousness is brought in to help. Once an option has been selected, the action is sent to the pre-supplementary motor area, the supplementary motor area, the basal ganglia and finally the motor cortex.

According to the model proposed by Bonn [20], the conscious network has some feedback from the control network of our brain, providing real time context to actions about to be executed, and a veto function, stopping some actions at the last minute before they are carried out. This is largely a function of the basal ganglia [21], with some assistance from working memory.

So as you can see, according to the CAP model, conscious thoughts are one link of a longer chain of neurological functions between stimulus and action – simply one cog in the machine. Thoughts are dependent on a number of processes that are both genetically and environmentally determined, beyond our conscious control. It’s simply wrong to assume that thoughts control the brain.

Dr Leaf is welcome to her opinion, but it is in contradiction to the overwhelming majority of neuroscientific knowledge

References

  1. Leaf, C., Who Switched Off My Brain? Controlling toxic thoughts and emotions. 2nd ed. 2009, Inprov, Ltd, Southlake, TX, USA:
  2. Leaf, C.M., Switch On Your Brain : The Key to Peak Happiness, Thinking, and Health. 2013, Baker Books, Grand Rapids, Michigan:
  3. Hao, X., et al., Individual differences in brain structure and resting brain function underlie cognitive styles: evidence from the embedded figures test. PLoS One, 2013. 8(12): e78089 doi: 10.1371/journal.pone.0078089
  4. Oxford Dictionary of English – 3rd Edition, 2010, Oxford University Press: Oxford, UK.
  5. De Pauw, S.S., et al., How temperament and personality contribute to the maladjustment of children with autism. J Autism Dev Disord, 2011. 41(2): 196-212 doi: 10.1007/s10803-010-1043-6
  6. Henriques, G. (When) Are You Neurotic? Theory of Knowledge: Psychology Today; 2012, 23 Nov 2012 [cited 2013 23 Nov 2012]; Available from: http://www.psychologytoday.com/blog/theory-knowledge/201211/when-are-you-neurotic.
  7. Vinkhuyzen, A.A., et al., Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion. Transl Psychiatry, 2012. 2: e102 doi: 10.1038/tp.2012.27
  8. Caspi, A., et al., Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry, 2010. 167(5): 509-27 doi: 10.1176/appi.ajp.2010.09101452
  9. Felten, A., et al., Genetically determined dopamine availability predicts disposition for depression. Brain Behav, 2011. 1(2): 109-18 doi: 10.1002/brb3.20
  10. Chen, C., et al., Contributions of dopamine-related genes and environmental factors to highly sensitive personality: a multi-step neuronal system-level approach. PLoS One, 2011. 6(7): e21636 doi: 10.1371/journal.pone.0021636
  11. Krueger, R.F., et al., The heritability of personality is not always 50%: gene-environment interactions and correlations between personality and parenting. J Pers, 2008. 76(6): 1485-522 doi: 10.1111/j.1467-6494.2008.00529.x
  12. Johnson, W., et al., Beyond Heritability: Twin Studies in Behavioral Research. Curr Dir Psychol Sci, 2010. 18(4): 217-20 doi: 10.1111/j.1467-8721.2009.01639.x
  13. Watkins, A. Being brilliant every single day – Part 1. 2012 [cited 2 March 2012]; Available from: http://www.youtube.com/watch?v=q06YIWCR2Js.
  14. Dixon, T., “Emotion”: The History of a Keyword in Crisis. Emot Rev, 2012. 4(4): 338-44 doi: 10.1177/1754073912445814
  15. Elliott, R., Executive functions and their disorders Imaging in clinical neuroscience. British Medical Bulletin, 2003. 65(1): 49-59
  16. Marien, H., et al., Unconscious goal activation and the hijacking of the executive function. J Pers Soc Psychol, 2012. 103(3): 399-415 doi: 10.1037/a0028955
  17. Baars, B.J. and Franklin, S., How conscious experience and working memory interact. Trends Cogn Sci, 2003. 7(4): 166-72 http://www.ncbi.nlm.nih.gov/pubmed/12691765 ; http://bit.ly/1a3ytQT
  18. Baars, B.J., Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in brain research, 2005. 150: 45-53
  19. Repovs, G. and Baddeley, A., The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience, 2006. 139(1): 5-21 doi: 10.1016/j.neuroscience.2005.12.061
  20. Bonn, G.B., Re-conceptualizing free will for the 21st century: acting independently with a limited role for consciousness. Front Psychol, 2013. 4: 920 doi: 10.3389/fpsyg.2013.00920
  21. Beste, C., et al., Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia, 2010. 48(2): 366-73 doi: 10.1016/j.neuropsychologia.2009.09.023

[1] We often describe rapid unconscious movements, especially to evade danger or to protect ourselves, as “reflexes”. Medically speaking, a true reflex is a spinal reflex, like the knee-jerk reflex. When a doctor taps the knee with the special hammer, the sudden stretch of the tendon passes a nerve impulse to the spinal cord, which is then passed to the muscle, which makes it contract. A true reflex doesn’t go to the brain at all.

Dr Caroline Leaf and the matter of mind over genes

Screen Shot 2014-11-07 at 8.13.45 pm

I think I might have to throw away my genetics textbook.

I was always taught that genes were the main driver behind health and disease, and I always thought it was a pretty good theory.

But not according to Dr Caroline Leaf, communication pathologist and self-titled cognitive neuroscientist, who said on her social media feeds today, “Our health is not controlled by genetics – our health is controlled by our mind.”

Taking her statement at face value, she appears to be saying that genes have nothing to do with our health. Dr Leaf has made some asinine statements in the past, but to suggest that genes are irrelevant to human health seemed so stupid that no one in their right mind would suggest such a thing.

Perhaps I was taking her statement the wrong way? I wanted to make sure I didn’t jump to any rash conclusions about Dr Leaf’s statement, so I pondered it at length. Could she be referring to ‘control’ in the absolute sense? How much control do genes have on our health? What about the mind?

After deliberating for a while, I still came to the conclusion that Dr Leaf’s statement was nonsense.

Unfortunately, Dr Leaf’s statement is, like so many of her previous Facebook memes, so vague as to be misleading. The meaning of ‘health’ and ‘controlled’ could be taken so many ways … which part of our health? How much regulation constitutes ‘control’? What about genetics?

Looking at her statement in more depth, it becomes clear that no matter which way Dr Leaf meant it, it’s still wrong. For example, all of human health is controlled, in part, by genetics. That’s because life itself is controlled by genetics. The human genome provides a blueprint for the construction of all of the proteins in all of the cells in our entire body. The expression of those genes determines exactly how our body will run. If the genes are wrong, if the translation of the gene code into a protein is wrong, or if too much or too little of a protein is made, all determines whether our body is functioning at its optimum level or not.

The stimulus for the expression of our genes is influenced by the environment in which we live. If I go out into the sun a lot, the UV light triggers my skin cells to make the protein melanin, which makes my skin go darker and helps to provide some protection against the damaging effects of the UV light.

While the environment plays a part of the expression of some genes, it’s wrong to say that genetics doesn’t control the process. If I go into the sun too much, I risk developing a melanoma, because the sun damages the genes in some of my skin cells, causing them to grow without control.

Genes are still responsible for the disease itself. Sometimes the trigger is from the environment, sometimes it’s not. There are some people with genes for melanoma who don’t need an environmental trigger, because they develop melanoma on skin that’s exposed to very little UV light, like the genital skin.

So fundamentally, even taking the environment into account, our health is controlled by our genetics.

The other part of Dr Leaf’s meme is also wrong. Our health is not controlled by our mind. Our genes are influenced by “the environment”, which according to the seminal paper by Ottman, “The environmental risk factor can be an exposure, either physical (e.g., radiation, temperature), chemical (e.g., polycyclic aromatic hydrocarbons), or biological (e.g., a virus); a behavior pattern (e.g., late age at first pregnancy); or a “life event” (e.g., job loss, injury). This is not intended as an exhaustive taxonomy of risk factors, but indicates as broad a definition as possible of environmental exposures.” [1]

Even if one considers the mind as part of the sub classification of “a behavior pattern”, it’s still pretty clear that most of the factors that make up our environment are not related to our mind at all but are related to the external world, of which we have minimal or no control over. Sure, we make choices, but our choices aren’t truly free. They’re constrained by the environment in which we find ourselves. In the same way, our mind may have some tiny influence on our health, but only insofar as our environment and our genes will allow.

When it all boils down, this meme of Dr Leaf’s is rested on her foundational presumption that our mind can control matter, a very strong theme throughout her most recent book [2], but which is still preposterous. Our thoughts are simply a function of our brain, which is in turn determined by the function of our nerve cells, which is in turn a function of our genes and their expression.

Our mind doesn’t control matter. Matter controls our mind.

I can keep my genetics textbooks after all.

References

  1. Ottman, R., Gene-environment interaction: definitions and study designs. Prev Med, 1996. 25(6): 764-70 http://www.ncbi.nlm.nih.gov/pubmed/8936580
  2. Leaf, C.M., Switch On Your Brain : The Key to Peak Happiness, Thinking, and Health. 2013, Baker Books, Grand Rapids, Michigan:

Dr Caroline Leaf – Exacerbating the Stigma of Mental Illness

Screen Shot 2014-10-18 at 12.44.33 pm

It was late in the afternoon, you know, that time when the caffeine level has hit critical and the only way you can concentrate on the rest of the day is the promise you’ll be going home soon.

The person sitting in front of me was a new patient, a professional young woman in her late 20’s, of Pakistani descent. She wasn’t keen to discuss her problems, but she didn’t know what else to do. After talking to her for a few minutes, it was fairly obvious that she was suffering from Generalised Anxiety Disorder, and I literally mean suffering. She was always fearful but without any reason to be so. She couldn’t eat, she couldn’t sleep, her heart raced all the time.

I was actually really worried for her. She let me do some basic tests to rule out any physical cause that was contributing to her symptoms, but that was as far as she let me help her. Despite talking at length about her diagnosis, she could not accept the fact that she had a psychiatric condition, and did not accept any treatment for it. She chose not to follow up with me either. I only saw her twice.

Perhaps it was fear for her job, social isolation, or a cultural factor. Perhaps it was the anxiety itself. Whatever the reason, despite having severe ongoing symptoms, she could not accept that she was mentally ill. She was a victim twice over, suffering from both mental illness, and its stigma.

Unfortunately, this young lady is not an isolated case. Stigma follows mental illness like a shadow, an extra layer of unnecessary suffering, delaying proper diagnosis and treatment of diseases that respond best to early intervention.

What contributes to the stigma of mental illness? Fundamentally, the stigma of mental illness is based on ignorance. Ignorance breeds stereotypes, stereotypes give rise to prejudice, and prejudice results in discrimination. This ignorance usually takes three main forms; people with mental illness are homicidal maniacs who need to be feared; they have childlike perceptions of the world that should be marveled; or they are responsible for their illness because they have weak character [1].

Poor information from people who claim to be experts doesn’t help either. For example, on her social media feed today, Dr Caroline Leaf said, “Psychiatric labels lock people into mental ill-health; recognizing the mind can lead us into trouble and that our mind is powerful enough to lead us out frees us! 2 Timothy1:7 Teaching on mental health @TrinaEJenkins 1st Baptist Glenardin.”

Dr Caroline Leaf is a communication pathologist and self-titled cognitive neuroscientist. It’s disturbing enough that Dr Leaf, who did not train in cognitive neuroscience, medicine or psychology, can stand up in front of people and lecture as an “expert” in mental health. It’s even more disturbing when her views on mental health are antiquated and inane.

Today’s post, for example. Suggesting that psychiatric labels lock people in to mental ill-health is like saying that a medical diagnosis locks them into physical ill-health. It’s a nonsense. Does diagnosing someone with cancer lock them into cancer? It’s the opposite, isn’t it? Once the correct diagnosis is made, a person with cancer can receive the correct treatment. Failing to label the symptoms correctly simply allows the disease to continue unabated.

Mental illness is no different. A correct label opens the door to the correct treatment. Avoiding a label only results in an untreated illness, and more unnecessary suffering.

Dr Leaf’s suggestion that psychiatric labels lock people in to their illness is born out of a misguided belief about the power of words over our thoughts and our health in general, an echo of the pseudo-science of neuro-linguistic programming.

The second part of her post, that “recognizing the mind can lead us into trouble and that our mind is powerful enough to lead us out frees us” is also baseless. Her assumptions, that thought is the main driving force that controls our lives, and that fixing our thought patterns fixes our physical and psychological health, are fundamental to all of her teaching. I won’t go into it again here, but further information on how Dr Leaf’s theory of toxic thinking contradicts basic neuroscience can be found in a number of my blogs, and in the second half of my book [2].

I’ve also written on 2 Timothy 1:7 before, another of Dr Leaf’s favourite scriptures, a verse whose meaning has nothing to do with mental health, but seized upon by Dr Leaf because one English translation of the original Greek uses the words “a sound mind”.

So Dr Leaf believes that labelling someone as having a mental illness will lock them into that illness, an outdated, unscientific and purely illogical notion that is only going to increase the stigma of mental illness. If I were @TrinaEJenkins and the good parishioners of 1st Baptist Glenardin, I would be asking for my money back.

With due respect, and in all seriousness, the stigma of mental illness is already disproportionate. Mental illness can cause insurmountable suffering, and sometimes death, to those who are afflicted by it. The Christian church does not need misinformation compounding the suffering for those affected by poor mental health. Dr Leaf should not be lecturing anyone on mental health until she has been properly credentialed.

References

  1. Corrigan, P.W. and Watson, A.C., Understanding the impact of stigma on people with mental illness. World Psychiatry, 2002. 1(1): 16-20 http://www.ncbi.nlm.nih.gov/pubmed/16946807
  2. Pitt, C.E., Hold That Thought: Reappraising the work of Dr Caroline Leaf, 2014 Pitt Medical Trust, Brisbane, Australia, URL http://www.smashwords.com/books/view/466848

Dr Caroline Leaf and the brain control misstatement

Screen Shot 2014-09-30 at 7.18.22 pmScreen Shot 2014-09-30 at 7.18.40 pm

“Always give credit where credit’s due.”

Dr Leaf is a communication pathologist, and a self-titled cognitive neuroscientist. Yesterday, Dr Leaf made a couple of carefully worded statements on her social media feeds, which given the quality of her previous couple of neuroscience-based factoids, is a definite improvement.

First, she said that, “Your brain is being continuously rewired throughout your life …”. Yep, I can’t disagree with that one. The brain is a very dynamic tissue, constantly remodelling the synaptic wiring to process the information it receives on a daily basis. That’s why the brain is referred to as ‘plastic’, reflecting the property of plastic to be moulded into any shape.

Her next offering sounds really good too. It’s full of encouragement, positivity and hope … the classic feel-good quote: “You can bring your brain under your control, on the path to a better, healthier, stronger, safer and happier life.” Whether it’s true or not depends on how literally you interpret it.

If you loosely interpret it, then it sounds ok. Sure, we have some control over how we act, and if we live our life in the direction dictated by our values, then we will have a better, healthier, stronger, safer and happier life. Modern psychological theory and therapies confirm this [1].

However, what Dr Leaf actually said was, “You can bring your brain under your control”. Having some control over our actions is entirely different to bringing our brain under our control. We can control some of our actions, but we don’t control our brain any more than we ‘control’ our car.

When we say that we’re ‘controlling’ the car, what we actually mean is that we are controlling the speed and direction of the car. But there are thousands of electrical and mechanical actions that take place each second that are vital for the running of the car, and that we have absolutely no direct control over. It just takes one loose nut or faulty fuse to make the car steer wildly out of control, or stop functioning entirely, and then we’re not in control at all.

In the same way, various diseases or lesions in the brain show that brain is really in control, tic disorders for example. These can range from simple motor tics (sudden involuntary movements) to complex tic disorders, such as Tourette’s (best known for the involuntary tendencies to utter obscenities). Another common example are parasomnias – a group of disorders in which people perform complex behaviours during their sleep – sleep talking, sleep walking, or sleep eating.

The fact we don’t see all of the underlying processes in a fully functional brain simply provides the illusion of control. Our brain is driving, our stream of thought just steers it a little, but it doesn’t take much to upset that veneer of control we think we possess.

Ultimately, our brain is still responsible for our action. We don’t have a separate soul that is able to control our brain. Any decisions that we make are the result of our brain deciding on the most appropriate course of action and enacting it [2] (and see also ‘Dr Caroline Leaf, Dualism, and the Triune Being Hypothesis‘ for a more in-depth discussion on the subject of dualism). Therefore, we can’t ever bring our brain under control.

This is important because if we believe that we can bring our brain under control, then by simple logical extension, we can control everything our brain is responsible for – our emotions, our feelings, our thoughts, our memory, and every single action we make. This is Dr Leaf’s ultimate guiding philosophy, though it’s not how our neurobiology works. If we were to believe that we control our thoughts and feelings, we set up an unwinnable struggle against our very nature, like trying to fight the tides.

We are not in control of all our thoughts, feelings, emotions or all of our actions, and neither do we have to be. We just need to make room for our uncomfortable emotions, feelings and thoughts, and to move in the direction of those things we value.

So if you were to take Dr Leaf at her word, she still missed the mark with her post. It sounds ok in a very general sense, but closer inspection reveals a subtle but significant error.

Giving credit where credit’s due, Dr Leaf has tried to tighten up her social media statements. It’s commendable, but unfortunately she needs to bring her underlying philosophy closer to the accepted scientific position to further improve the quality of her teaching.

References

  1. Harris, R., Embracing Your Demons: an Overview of Acceptance and Commitment Therapy. Psychotherapy In Australia, 2006. 12(6): 1-8 http://www.actmindfully.com.au/upimages/Dr_Russ_Harris_-_A_Non-technical_Overview_of_ACT.pdf
  2. Haggard, P., Human volition: towards a neuroscience of will. Nat Rev Neurosci, 2008. 9(12): 934-46 doi: 10.1038/nrn2497

Dr Caroline Leaf and the genetic fluctuations falsehood

Screen Shot 2014-09-27 at 12.47.37 am

While idling away on Facebook, as is my usual pass time, I came upon Dr Leaf’s Facebook feed. There were her usual self-indulgent holiday happy-snaps and another couple of Pinterest-style fluffy inspirational posts. Then this: “Our genetic makeup fluctuates by the minute based on what we are thinking and choosing”.

Dr Caroline Leaf is a South African born and trained, US based, communication pathologist. She also claims that she’s a cognitive neuroscientist. Given the quality of the posts on her social media pages recently, no one could ever take such a claim seriously.

To make sure we’re all clear about what she just said, I’m going to say it again: “Our genetic makeup fluctuates by the minute based on what we are thinking and choosing”. It was an astonishing, if not bewildering statement, especially coming from someone with a PhD level education. If Dr Leaf were a medical doctor and publically made a statement like that, her registration would be reconsidered.

The core of the statement, which pushes it so far beyond the boundaries of rational scientific thinking, is the phrase “Our genetic makeup fluctuates by the minute.”

DNA in our cells is like an old audio cassette tape. Audio cassette tape is a long magnetic stripe, storing the code which the tape player decodes as sound. DNA is a chemical string which has a sequence of “bases” off to the side. The full DNA molecule is made of two matching strings joined by chemical bonds between the bases (hence the name, “base pairs”). Depending on what the cell needs, it runs the DNA through a decoder to either copy it, or to ‘play’ it (i.e. using the information stored in the code to build new proteins).

Like the tape in an audio cassette, the code of the DNA is incredibly stable. The rate of DNA mutation is about 1 in 30 million base pairs [1]. DNA doesn’t ‘fluctuate’, (“rise and fall irregularly in number or amount” [2]). It’s not the stock market. The number of genes in each cell of my body does not rise or fall depending on whether I’m having a good hair day.

The other part of Dr Leaf’s statement, that our DNA “fluctuates … based on what we are thinking and choosing” is also scientific nonsense. The only way that your thoughts and choices are capable of inducing genetic mutations is if those thoughts or choices involve cigarette smoking or standing next to industrial sources of ionising radiation.

I think Dr Leaf is trying to say that our thoughts and choices can change our gene expression, which is the construction of new proteins from the instructions in the DNA code. However, gene expression has nothing to do with our thoughts and choices. IVF embryos are expressing genes like crazy as they grow from one cell to an embryo in just a petri dish. It doesn’t think or choose.

More often than not, our thoughts and our choices are the result of gene expression, not the cause of it. We don’t have any specific control over the process either. The process of genetic expression is dependant on a complex series of promoters and tags on the DNA, which are controlled by other proteins and DNA within the cell, not thought or choice.

The truth is that gene expression occurs moment-by-moment, regardless of what we think or don’t think, do or don’t do. Gene expression is simply DNA being read. Our genetic makeup, the DNA code, is stable. It does not fluctuate. There is no part of Dr Leaf’s statement that is scientifically accurate.

Ultimately, Dr Leaf continues on her pursuit of pseudoscience, an affront to the people who trust her to tell them the truth, and the God of all truth that she purportedly represents.

References

  1. Xue, Y., et al., Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree. Curr Biol, 2009. 19(17): 1453-7 doi: 10.1016/j.cub.2009.07.032
  2. Oxford Dictionary of English – 3rd Edition, 2010, Oxford University Press: Oxford, UK.

Dr Caroline Leaf and Picking Cherries

Screen Shot 2014-09-20 at 11.58.36 am

When it comes to fruit, I’m a bit picky. Cherries are one of my least favourite. It makes things difficult at times. I’m no good with Black Forest cake or with traditional Christmas goodies like Christmas pudding or rumballs. I guess that’s a good thing, one less thing to be tempted by.

Some fruit can be picked a little unripe, because it will still ripen after it’s picked. Cherries are a bit more delicate. Apparently when it comes to picking cherries, the key is to pick only the ripest fruit and leave the rest on the tree.

In science, “cherry picking” is a colloquial expression for the practice of selectively picking or presenting only the information that agrees with your personal theory, ignoring the rest. Richard Somerville put it well: “Choosing to make selective choices among competing evidence, so as to emphasize those results that support a given position, while ignoring or dismissing any findings that do not support it, is a practice known as ‘cherry picking’ and is a hallmark of poor science or pseudo-science.” (Testimony before the US House of Representatives Committee on Energy and Commerce Subcommittee on Energy and Power, March 8, 2011).

You can see cherry picking everywhere if you know what to look for. It’s usually done by advertising and PR firms to make a product sound all sciencey or mediciney, something like, “Research shows that …”. Then deep in the fine print is a reference to a single scientific paper. When you actually look at the article in question, the “research” is weak or horribly biased.

Cherry picking is also common amongst organisations with a barrow to push, or websites like Natural Wellness Care (http://www.naturalwellnesscare.com/stress-statistics.html), which push a bunch of statistics to magnify a problem so they can sell or promote their “solution”.

Dr Caroline Leaf is a communication pathologist and a self-titled cognitive neuroscientist. Cherry picking is one of her favourite tricks. Her teaching from the pulpit is littered with the phrase, “Research says …”, without ever mentioning where the research came from. You just have to take her word for it.

Dr Leaf cherry picks extensively through her published work. There are too many examples to list them all, but her use of the quantum physics term, “quantum Zeno effect” is a prime example [1: p108, 2: ch13].

Another great example of cherry picking is Dr Leaf’s theory of the “Heart as a mini-brain” [2: ch11, 3: p40]. Dr Leaf exclusively relies on the information published by a group called HeartMath (http://www.heartmath.org), who themselves cherry pick extensively. HeartMath list reams of citations as evidence that the heart is a little brain, but even a basic understanding of routine clinical tests like an ECG shows that their ground breaking discoveries are little more than pseudoscience [see also Ref 2: ch11].

Dr Leaf then selectively uses certain studies from HeartMath to back up various claims she makes. A case in point is her claim that, “An ingenuous experiment set up by the HeartMath Foundation determined that genuine positive emotion, as reflected by a measure called ‘heart rate variability’, directed with intentionality towards someone actually changed the way the double helix DNA strand coils and uncoils. And this goes for both positive and negative emotions and intentions.” [1: p111]

This is cherry picking in its purest form. Despite the study being over 20 years old, and so badly designed that even alternative scientific journals wouldn’t publish it, Dr Leaf claimed it as proof that emotions and intentions can alter DNA [Chapter 13 of my book, Ref 2 outlines why the study is so poor].

In her social media feed today, Dr Leaf quoted Peace Pilgrim, a silver haired mystic who walked across America for 28 years, owning nothing but the clothes on her back, all in the name of peace. The quote Dr Leaf republished was, “If you realized how powerful your thoughts are, you would never think a negative thought.” This was taken from a radio talk that Peace Pilgrim gave in 1964 (http://www.peacepilgrim.com/steps1.htm). Peace Pilgrim’s quote is interesting, even inspirational, but not scientific. Inspiring quotes from half a century ago are fine, but only if you’re a motivational speaker or a B-grade life coach.

Dr Leaf says she’s a cognitive neuroscientist. Real cognitive neuroscientists don’t cherry pick whichever quotes or studies fit with their prevailing theory. They look for the truth by synthesising all the evidence into an accurate theory.

Dr Leaf may be trying to inspire people, but if she claims to be a scientist of any form, she has to adhere to a higher standard. She has to make sure that the words she uses are not just inspiring, but accurate as well, because facts and fruit are not the same. If you want a good Black Forest cake, then cherry pick all you want, but if you want the truth, consider all the facts first.

Like to read more about Dr Leaf’s teaching and how it compares to current science? Download the free eBook HOLD THAT THOUGHT, Reappraising The Work Of Dr Caroline Leaf

References

  1. Leaf, C.M., Switch On Your Brain : The Key to Peak Happiness, Thinking, and Health. 2013, Baker Books, Grand Rapids, Michigan:
  2. Pitt, C.E., Hold That Thought: Reappraising the work of Dr Caroline Leaf, 2014 Pitt Medical Trust, Brisbane, Australia, URL http://www.smashwords.com/books/view/466848
  3. Leaf, C., Who Switched Off My Brain? Controlling toxic thoughts and emotions. 2nd ed. 2009, Inprov, Ltd, Southlake, TX, USA: