Fats and Figures: Re-examining saturated fat and what’s really good for your heart

Fats and Figures cover 1400

A Facebook friend forwarded me an article a few weeks back and asked for my humble medical opinion.

The article was entitled, “World Renowned Heart Surgeon Speaks Out On What Really Causes Heart Disease”. It was written by a man who said he was a heart surgeon, and who claimed to be coming clean on the real reason why our world has an epidemic of obesity and heart disease despite the low fat advice of the medical profession.

It’s a highly controversial topic right now. For decades, the western world was under the impression that fat was tobaccos right hand man in a war on good health. Standard medical dogma was that high cholesterol was bad, and that saturated fat was its main source. Evil butter was replaced with angelic margarine. Fatty red meat was always served with a generous side portion of guilt. Low fat became high fashion.

Today, the pendulum of public opinion has swung back with such amazing ferocity, it’s become more like a wrecking ball. Fat has returned to the fold as friend instead of foe. The once mighty cholesterol lowering medications called statins have become seen as another example of pharmaceutical company profits-before-patients. Sugar has become the new villain, and along with it, the nebulous concept of “inflammation” as the key mechanism of heart disease and strokes, and nearly every other medical ailment.

What started off as a three-paragraph reply on Facebook has evolved into a short eBook, which you can download for free from Smashwords (https://www.smashwords.com/books/view/514719)

In today’s post, I want to look at six things that, over the years, have been touted as contributing to or preventing heart disease, and see what the evidence says. The results may be surprising!

1. Is saturated fat bad? Is polyunsaturated fat good?

According to a meta-analysis of observational studies on dietary fats by Chowdhury et al. (2014), relative risks for coronary disease were 1.02 (95% CI, 0.97 to 1.07) for saturated fats, 0.99 (CI, 0.89 to 1.09) for monounsaturated, 0.93 (CI, 0.84 to 1.02) for long-chain n-3 polyunsaturated, 1.01 (CI, 0.96 to 1.07) for n-6 polyunsaturated, and 1.16 (CI, 1.06 to 1.27) for trans fatty acids. The total number of patients in all of the trials was more than half a million. This is pretty convincing evidence that saturated fats aren’t as bad as first believed.

What does all this mean? In statistical terms, a relative risk is the incidence of disease in one group compared to the incidence of disease in another. The risk of the disease in the two groups is the same if the relative risk = 1. A relative risk of 7.0 means that the experiment group has seven times the risk of a control group. A relative risk of 0.5 would mean the experiment group has half the risk of the control group. The confidence interval is a range of numbers in which there is a 95% chance that the true relative risk is in the interval. A result is “statistically significant” when the confidence interval (CI) does not cross the number 1.

So going back to the study by Chowdhury et al. (2014), only 2% more patients in the group with the highest saturated fat consumption had heart disease compared to the lowest saturated fat consumption. The confidence interval crossed 1, so that result may have been due to chance alone. For trans fatty acid consumption, 16% more people had heart disease in the higher consumption group compared to the lower consumption group, which was probably a real effect and not due to chance (the confidence interval did not cross 1). Simply put, trans-fats are bad. Saturated fats probably aren’t.

The same meta-analysis by Chowdhury et al. (2014) also reviewed supplementation with PUFA’s on the overall risk of heart disease. They found that in 27 randomised controlled trials with more than 100,000 people, relative risks for coronary disease were 0.97 (CI, 0.69 to 1.36) for alpha-linolenic acid supplements, 0.94 (CI, 0.86 to 1.03) for long-chain n-3 polyunsaturated acid supplements, and 0.89 (CI, 0.71 to 1.12) for n-6 polyunsaturated fatty acid supplements. In this case, there was a trend in favour of supplementation with omega-3 and omega-6 supplements, but it was small, and may have been due to chance. This is confirmed by other reviews (Rizos, Ntzani, Bika, Kostapanos, & Elisaf, 2012; Schwingshackl & Hoffmann, 2014)

So it appears that it doesn’t matter what fat you consume, saturated or polyunsaturated, or whether you supplement with fish oils or eat lots of fish, your cardiovascular risk is much the same. The only thing that’s definitely clear is that you should avoid trans-fats.

2. Is sugar bad for you?

That depends.

When we think of sugar, we think of sucrose, a carbohydrate made up of one glucose and one fructose molecule. There are many carbohydrates, which are just various combinations of different numbers of glucose/fructose molecules, sucrose being one type.

Sugar consumption is thought to be the modern scourge, it’s consumption linked to everything from cancer to gallstones. It’s been recently become the villain of cardiovascular disease as well. It’s thought to cause insulin resistance, inflammation and an increase in the fats circulating in the blood stream. So, is it as bad as they say? The evidence is surprising.

First of all, sugar doesn’t make you fat. Rather, it’s the calories you consume that make you fat. Te Morenga, Mallard, and Mann (2013) conclude their meta-analysis of dietary sugar and body weight, “Among free living people involving ad libitum diets, intake of free sugars or sugar sweetened beverages is a determinant of body weight. The change in body fatness that occurs with modifying intakes seems to be mediated via changes in energy intakes, since isoenergetic exchange of sugars with other carbohydrates was not associated with weight change.”

The intake of sugar and glucose don’t cause an increase in inflammation or cholesterol in healthy people. In a study on effects of sugar consumption on the biomarkers of healthy people, Jameel, Phang, Wood, and Garg (2014) found that consumption of sucrose and glucose actually decreased cholesterol. Fructose increased cholesterol, though interestingly, the Total:HDL ratio (which is prognostic for heart disease) did not change significantly with the consumption of any form of sugar. They also found that fructose was associated with an increase in inflammation, but glucose and sucrose reduced inflammation.

On the other hand, a study by Isordia-Salas et al. (2014) showed a small but significant association between those with high blood glucose level and inflammation, though they also found an association between inflammation and BMI (the body-mass index), so it’s not clear what the causal factor is.

There seems to be a clearer association between blood glucose after meals in those who have abnormal glucose metabolism. In patients with pre-diabetes, higher levels of blood glucose two hours after eating were associated with increased risk of death from cardiovascular disease and all causes (Coutinho, Gerstein, Wang, & Yusuf, 1999; Decode Study Group, 2003; Lind et al., 2014).

To melt your brain a little more, just because high glucose levels are associated with higher mortality doesn’t mean the lower the glucose, the better. In the study by the Decode Study Group (2003), low blood glucose had a higher mortality than normal glucose levels, and a meta-analysis by Noto, Goto, Tsujimoto, and Noda (2013) showed that low carbohydrate diets have a 30% increase in all-cause mortality.

How do you pull all of these seemingly contradictory studies together? The bottom line appears to be, according to the evidence so far, that consumption of sugar does not cause inflammation or significantly increase the risk of heart disease in healthy people who are able to metabolise it properly.

In those people who have abnormal glucose metabolism, the higher the glucose is after a meal (a measure of how well the body processes glucose), then the higher the risk is of inflammation, heart disease, and all-cause mortality.

The distinction between who has normal glucose metabolism and who has dysfunctional glucose metabolism is probably related to genetics. A study by Sousa, Lopes, Hueb, Krieger, and Pereira (2011) showed that genetic information was able to predict 5-year incidence of major cardiovascular events and overall mortality in non-diabetic individuals, even after adjustment for the persons blood sugar. Those without diabetes but who had a high genetic risk had a similar incidence of cardiovascular events compared to diabetics. So if you have the genes, your body doesn’t process the glucose properly and your risk is increased, even if you aren’t bad enough to have a diagnosis of diabetes.

Thus it appears that sugar is not the bad guy that everyone makes it out to be. Excess sugar will make you fat, but so will excess everything-else. It probably won’t kill you unless you’re genetically pre-disposed to handle it poorly. And there’s the rub, because we don’t have the capacity to test for that clinically yet.

So the last word on sugar is that it’s a sometimes food. You may be lucky enough to handle large amounts of sugar, but the best advice at this time is don’t tempt fate by eating large quantities of it.

3. Is obesity bad for you?

Again, that depends.

It used to be thought that obesity posed a linear risk, that is, the fatter you were the higher your risk of heart attacks, cancer, diabetes, everything. Then in 2013, a meta-analysis by Flegal, Kit, Orpana, and Graubard (2013) showed that people who were overweight (but not obese) had better survival than those who were normal weight.

Later in 2013, Kramer, Zinman, and Retnakaran (2013) published a meta-analysis which showed that metabolically unhealthy people of normal BMI were at greater risk of cardiovascular disease than metabolically healthy obese people.

Last year a paper by Barry et al. (2014) showed that those who were unfit were twice as likely to die compared to people who were fit, irrespective of their BMI.

So obesity doesn’t seem to be the problem after all, rather it’s a persons ability to handle blood sugar, cholesterol and blood pressure that’s the problem. It seems that more people with obesity have these metabolic problems, but correlation does not equal causation. There’s probably a undetermined factor that links obesity and metabolic dysfunction.

I’m not suggesting that we should all get fatter. Obesity has problems of its own, unrelated to metabolic issues, that make it problematic. We should still be careful about our weight. The take-home message is that skinny does not necessarily mean healthy and that focusing on what the scales are saying may be distracting us from the real problem.

4. Is meat bad for you? Should we be vegetarians?

In a word, no.

In the two available meta-analyses of the studies on red meat consumption (Larsson & Orsini, 2014), and red meat vs white meat vs all meat (Abete, Romaguera, Vieira, Lopez de Munain, & Norat, 2014), there was a statistical but moderate increase in death and heart disease from processed meats.

There was a trend towards a higher death rate in those who ate the most red meat, but the trend wasn’t statistically significant (i.e.: may have been related to chance). There was no trend associated with white meat consumption. So it appears that as long as it’s not processed meat, red meat isn’t as bad as people first thought.

Meat might not be particularly bad, but are vegetarian diets better? Again, probably not. The meta-analysis by Huang et al. (2012) shows that there’s a positive trend for vegetarian diets, though again, that might be attributable to chance as the results are not statistically significant.

The take-away message? Even though the trends may be related to chance, the trend is favourable for vegetables and not as favourable for red meat. So eat more veggies, eat less red meat, but don’t let some sanctimonious vegan convince you that meat is noxious and vile.

5. Is alcohol good for you?

A different meme recently came around my Facebook feed, entitled, “Is Drinking Wine Better Than Going To The Gym? According To Scientists, Yes!” For a while there, I had fantasies about giving my membership card back to the gym and heading down to the local bottle shop for my daily workout instead.

Disappointingly, it turns out that red wine isn’t better than exercise according to the research that I uncovered. However, my research did suggest that the daily exercise of wine drinking is still beneficial, and not just red wine, but alcohol of any form. Ronksley, Brien, Turner, Mukamal, and Ghali (2011) showed about two standard drinks of alcohol daily conferred a 25% reduction in deaths from heart disease (relative risk 0.75 (0.68 to 0.81)), and a small but statistically strong reduction in death from all causes of 13% (relative risk 0.87 (0.83 to 0.92)). The risk reduction of coronary heart disease from alcohol was also confirmed in a more recent study by Roerecke and Rehm (2014), who showed that death from heart disease was reduced by 36% for those who consistently consumed less than three standard drinks a day (relative risk 0.64 (0.53 to 0.71)).

The effect applies to consistent daily consumption, not to drinking in a cluster pattern (binging or weekend-drinking only, for example). And there’s a gender difference, women having the maximum beneficial effect at about one drink a day, and two drinks a day in men.

6. Is exercise good for you?

In a word, yes!

I’ve never seen a study that showed exercise was harmful. Exercise improves overall metabolism, decreases cardiovascular disease, improves mood and memory and increases your lifespan, amongst many other things. If exercise came in pill form, it would be labelled a wonder-drug.

As discussed earlier, fit people have a better rate of survival compared to unfit people, whether they’re obese or not (Barry et al., 2014). And the key to fitness is exercise. In a large meta-analysis by Samitz, Egger, and Zwahlen (2011), 80 studies involving more than 1.3 million subjects in total were analysed, showing that the highest levels of exercise had an all cause mortality reduction of 35% (relative risk 0.65 (0.6 to 0.71)).

There’s always debate about what form of exercise is best. Are you better to do weights, do interval training, or run for hours? Honestly, it probably doesn’t matter that much in the end. What is important is that you work hard enough to elevate your heart rate and break a sweat. If you aren’t very fit, it won’t take much exercise to do that. If you are very fit, it probably will. But for the average person, you don’t have to jump straight into a boot camp style program and work so hard that you’re puking everywhere, and so sore afterwards that you can’t move for a week. Common sense prevails!

References

Abete, I., Romaguera, D., Vieira, A. R., Lopez de Munain, A., & Norat, T. (2014). Association between total, processed, red and white meat consumption and all-cause, CVD and IHD mortality: a meta-analysis of cohort studies. Br J Nutr, 112(5), 762-775. doi: 10.1017/S000711451400124X

Barry, V. W., Baruth, M., Beets, M. W., Durstine, J. L., Liu, J., & Blair, S. N. (2014). Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis, 56(4), 382-390. doi: 10.1016/j.pcad.2013.09.002

Chowdhury, R., Warnakula, S., Kunutsor, S., Crowe, F., Ward, H. A., Johnson, L., . . . Di Angelantonio, E. (2014). Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and meta-analysis. Ann Intern Med, 160(6), 398-406. doi: 10.7326/M13-1788

Coutinho, M., Gerstein, H. C., Wang, Y., & Yusuf, S. (1999). The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care, 22(2), 233-240.

Decode Study Group, E. D. E. G. (2003). Is the current definition for diabetes relevant to mortality risk from all causes and cardiovascular and noncardiovascular diseases? Diabetes Care, 26(3), 688-696.

Flegal, K. M., Kit, B. K., Orpana, H., & Graubard, B. I. (2013). Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA, 309(1), 71-82. doi: 10.1001/jama.2012.113905

Huang, T., Yang, B., Zheng, J., Li, G., Wahlqvist, M. L., & Li, D. (2012). Cardiovascular disease mortality and cancer incidence in vegetarians: a meta-analysis and systematic review. Ann Nutr Metab, 60(4), 233-240. doi: 10.1159/000337301

Isordia-Salas, I., Galvan-Plata, M. E., Leanos-Miranda, A., Aguilar-Sosa, E., Anaya-Gomez, F., Majluf-Cruz, A., & Santiago-German, D. (2014). Proinflammatory and prothrombotic state in subjects with different glucose tolerance status before cardiovascular disease. J Diabetes Res, 2014, 631902. doi: 10.1155/2014/631902

Jameel, F., Phang, M., Wood, L. G., & Garg, M. L. (2014). Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation. Lipids Health Dis, 13(1), 195. doi: 10.1186/1476-511X-13-195

Kramer, C. K., Zinman, B., & Retnakaran, R. (2013). Are metabolically healthy overweight and obesity benign conditions?: A systematic review and meta-analysis. Ann Intern Med, 159(11), 758-769. doi: 10.7326/0003-4819-159-11-201312030-00008

Larsson, S. C., & Orsini, N. (2014). Red meat and processed meat consumption and all-cause mortality: a meta-analysis. Am J Epidemiol, 179(3), 282-289. doi: 10.1093/aje/kwt261

Lind, M., Tuomilehto, J., Uusitupa, M., Nerman, O., Eriksson, J., Ilanne-Parikka, P., . . . Lindstrom, J. (2014). The association between HbA1c, fasting glucose, 1-hour glucose and 2-hour glucose during an oral glucose tolerance test and cardiovascular disease in individuals with elevated risk for diabetes. PLoS One, 9(10), e109506. doi: 10.1371/journal.pone.0109506

Noto, H., Goto, A., Tsujimoto, T., & Noda, M. (2013). Low-carbohydrate diets and all-cause mortality: a systematic review and meta-analysis of observational studies. PLoS One, 8(1), e55030. doi: 10.1371/journal.pone.0055030

Rizos, E. C., Ntzani, E. E., Bika, E., Kostapanos, M. S., & Elisaf, M. S. (2012). Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA, 308(10), 1024-1033. doi: 10.1001/2012.jama.11374

Roerecke, M., & Rehm, J. (2014). Alcohol consumption, drinking patterns, and ischemic heart disease: a narrative review of meta-analyses and a systematic review and meta-analysis of the impact of heavy drinking occasions on risk for moderate drinkers. BMC Med, 12(1), 182. doi: 10.1186/s12916-014-0182-6

Ronksley, P. E., Brien, S. E., Turner, B. J., Mukamal, K. J., & Ghali, W. A. (2011). Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ, 342, d671. doi: 10.1136/bmj.d671

Samitz, G., Egger, M., & Zwahlen, M. (2011). Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. Int J Epidemiol, 40(5), 1382-1400. doi: 10.1093/ije/dyr112

Schwingshackl, L., & Hoffmann, G. (2014). Dietary fatty acids in the secondary prevention of coronary heart disease: a systematic review, meta-analysis and meta-regression. BMJ Open, 4(4), e004487. doi: 10.1136/bmjopen-2013-004487

Sousa, A. G., Lopes, N. H., Hueb, W. A., Krieger, J. E., & Pereira, A. C. (2011). Genetic variants of diabetes risk and incident cardiovascular events in chronic coronary artery disease. PLoS One, 6(1), e16341. doi: 10.1371/journal.pone.0016341

Te Morenga, L., Mallard, S., & Mann, J. (2013). Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ, 346, e7492. doi: 10.1136/bmj.e7492

Advertisements

Dr Caroline Leaf and the organic foods fallacy

Screen Shot 2014-11-28 at 1.13.59 am

Organic foods. They are amazingly popular. More than a million Australians buy organic foods regularly, and several million more buy it occasionally. The retail value of the organic market is estimated to be more than $1 billion annually. The assumption made by most people is that because it’s so popular, organic foods must be good for you, or at least have something going for them to make them worth all the hype.

Of course, just because something’s immensely popular and has a billion-dollar turnover doesn’t necessarily mean it’s beneficial (One Direction is a case-in-point).

In fact, despite organic foods being touted by their supporters as healthier, safer, and better for the environment than normal foods, actual scientific evidence fails to show any significant difference. I wrote about this earlier in the year (see: Borderline Narcissism and Organic Food). Since then, another large prospective trial deflated organic food’s bubble, with a British study showing no change in the incidence of cancer in women who always ate organic foods versus those who never ate organic foods [1].

The dearth of benefit from organic foods wouldn’t be so bad if they were just another guy in the line-up, something neutral and inert. Unfortunately, not only can organic produce be contaminated if farmed incorrectly [2, 3], but they come at an extraordinary premium, sometimes costing four times more than their conventional counterparts (Borderline Narcissism and Organic Food).

Dr Caroline Leaf is a communication pathologist and a self-titled cognitive neuroscientist. A couple of months ago, she let slip her intention to publish a book in 2015 about food. Who knows what she’ll actually say, but if today’s social media meme is anything to go by, it will likely follow the same pattern of her other teachings.

Today, she wrote, “Research shows that dark organic CHOCOLATE lowers blood pressure, improves circulation, increase HDL (“good”) cholesterol, reduce the risk of heart attack and stroke, and increases insulin … and … recent research has even suggest it may prevent weight gain!”

As I discussed recently, Dr Leaf does herself a disservice by not citing her sources. It’s very brave to write in a public forum that dark chocolate reduces the heart attack and stroke, since this could be interpreted as medical advice, which she is not qualified to give. As for the actual effects of dark chocolate, there is not a lot of quality evidence on dark chocolate on its own. A 2011 meta-analysis of general chocolate consumption on cardiovascular risk did indeed show a relative risk reduction of 37% [4]. But before you prescribe yourself two dark chocolate Lindt balls twice a day, consider that a relative risk reduction of 37% isn’t a big effect. Plus, the recommended 50 grams of 85% organic dark chocolate to attain the small benefit for your cardiovascular health contains just over 300 calories/1280 kJ (the average can of Coke contains 146 calories/ 600 kJ), and is 30% saturated fat (http://caloriecount.about.com/calories-green-blacks-organic-dark-chocolate-i110689). So any health benefit that may be associated with the poly-phenol content is likely nullified by the high saturated fat and calorie count.

What concerns me about Dr Leaf’s future foray into dietetics is that little word sitting quietly in her opening sentence: “organic”. Dr Leaf is an organic convert. But rather than act like a scientist that she claims to be, she preaches from her biases, ignoring the evidence that organic food is all hype and no substance, encouraging Christians everywhere to pay excessive amounts of money for something that’s of absolutely no benefit. Dr Leaf is welcome to eat whatever she chooses, but encouraging organic eating without clear benefit is more hindrance than help for most of her followers.

References

  1. Bradbury, K.E., et al., Organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. Br J Cancer, 2014. 110(9): 2321-6 doi: 10.1038/bjc.2014.148
  2. Mukherjee, A., et al., Association of farm management practices with risk of Escherichia coli contamination in pre-harvest produce grown in Minnesota and Wisconsin. Int J Food Microbiol, 2007. 120(3): 296-302 doi: 10.1016/j.ijfoodmicro.2007.09.007
  3. Sample, I., E coli outbreak: German organic farm officially identified. The Guardian, London, UK, 11 June 2011 http://www.theguardian.com/world/2011/jun/10/e-coli-bean-sprouts-blamed
  4. Buitrago-Lopez, A., et al., Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. BMJ, 2011. 343: d4488 doi: 10.1136/bmj.d4488

Dr Caroline Leaf – Contradicted by the latest research

This is my most popular post by far.  I truly appreciate the support and interest in this post, but I’ve discovered and documented a lot more about Dr Leaf’s ministry in the last two years.  I welcome you to read this post, but if you’d like a more current review of the ministry of Dr Caroline Leaf, a new and improved version is here:
Dr Caroline Leaf – Still Contradicted by the Latest Evidence, Scripture & Herself

* * * * *

Mr Mac Leaf, the husband of Dr Caroline Leaf, kindly took the time to respond to my series of posts on the teachings of Dr Leaf at Kings Christian Centre, on the Gold Coast, Australia, earlier this month. As I had intended, and as Mr Leaf requested, I published his  reply, complete and unabridged (here).

This blog is my reply.  It is heavily researched and thoroughly referenced.  I think it’s fair to say that while Dr Leaf draws her conclusions from some scientific documents, there is more than enough research that contradicts her statements and opinions.  I have only listed a small fraction, and only on some of the points she raised.

In fairness, the fields of neurology and neuroscience are vast and rapidly expanding, and it is impossible for one person to cover all of the literature on every subject.  This applies to myself and Dr Leaf.  However, I believe that the information I have read, and referenced from the latest peer-reviewed scholarly works, do not support Dr Leaf’s fundamental premises.  If I am correct, then the strength and validity of Dr Leaf’s published works should be called into question.

As before, I welcome any reply or rebuttal that Dr Leaf wishes to make, which I will publish in full if she requests.  In the interests of healthy public debate, and encouraging people to make their own informed decisions on the teachings of Dr Leaf, any comments regarding the response of Mr Leaf, Dr Leaf or myself, are welcome provided they are constructive.

This is a bit of a lengthy read, but I hope it is worthwhile.

Dear Mr Leaf,

Thank you very much for taking the time out to reply to some of the points raised in my blog.  I am more than happy to publish your response, and to publish any response you wish to make public.

ON INFORMED DECISIONS

I published my blog posts to open up discussion on the statements made by Dr Leaf at the two meetings that I attended at Kings Christian Centre on the Gold Coast.  As you rightly point out, people should be able to make informed decisions.  A robust discussion provides the information required for people to make an informed choice.  Any contributions to this discussion from either yourself or Dr Leaf would be most welcome.

I apologise if you interpreted my blogs as judgemental, or if you believe there are any misunderstandings.  You may or may not have read my final two paragraphs from the third post, in which I acknowledged that I may have misunderstood where she was coming from, but that I would welcome her response.  If there were any misunderstandings, it is likely because Dr Leaf did not make any attempt to reference any of the statements she made on the day.  You may argue that she was speaking to a lay audience, and referencing is therefore not necessary.  However, I have been to many workshops for the lay public by university professors, who have extensively referenced their information during their presentations.  A lay audience does not preclude providing references.  Rather, it augments the speakers authority and demonstrates the depth of their knowledge on the subject at hand.

YOUR DEFENCE

It’s interesting that you feel the need to resort to defence by association, and Ad Hominem dismissal as your primary counter to the points I raised.

Can you clarify how attending the same university as Dr Christaan Barnard, or a Nobel laureate, endorses her arguments or precludes her from criticism?  I attended the University of Queensland where Professor Ian Frazer was based.  He developed the Human Papilloma Virus vaccine and was the 2006 Australian of the Year.  Does that association enhance my argument?

Can you also clarify why a reference from a colleague was preferred to letting Dr Leaf’s statements and conclusions speak for themselves?  Dr Amua-Quarshie’s CV is certainly very impressive, no doubt about that, although he doesn’t list the papers he’s published.  (I’m assuming that to hold the title of Adjunct Professor, he’s published peer-reviewed articles.  Is he willing to list them, for the record?)

Whatever his credentials, his endorsement means very little, since both Dr Leaf and Dr Amua-Quarshie would know from their experience in research that expert opinion is one of the lowest forms of evidence, second worst only to testimonials [1].  Further, both he and Dr Leaf are obviously close friends which introduces possible bias.  His endorsement is noteworthy, but it can not validate every statement made by Dr Leaf.  Her statements should stand up on their own through the rigors of critical analysis.

On the subject of evidence, disparaging your critics is not a substitute for answering their criticism.  Your statement, “By your comments it is obvious that you have not kept up to date with the latest Scientific research” is an assumption that is somewhat arrogant, and ironic since Dr Leaf is content to use superseded references dating back to 1979 to justify her current hypotheses.

DR LEAF’S EVIDENCE

In the blog to which you referred, Dr Leaf makes a number of statements that are intended to support her case.  These include the following.

“A study by the American Medical Association found that stress is a factor in 75% of all illnesses and diseases that people suffer from today.”  She fails to reference this study.

“The association between stress and disease is a colossal 85% (Dr Brian Luke Seaward).”   But again, she fails to reference the quote.

“The International Agency for Research on Cancer and the World Health Organization has concluded that 80% of cancers are due to lifestyles and are not genetic, and they say this is a conservative number (Cancer statistics and views of causes Science News Vol.115, No 2 (Jan.13 1979), p.23).”  It’s good that she provides a reference to her statement.  However, referencing a journal on genetics from 1979 is the equivalent of attempting to use the land-speed record from 1979 to justify your current preference of car.  The technology has advanced significantly, and genetic discoveries are lightyears ahead of where they were more than three decades ago.

“According to Dr Bruce Lipton (The Biology of Belief, 2008), gene disorders like Huntington’s chorea, beta thalassemia, cystic fibrosis, to name just a few, affect less than 2% of the population. This means the vast majority of the worlds population come into this world with genes that should enable the to live a happy and healthy life. He says a staggering 98% of diseases are lifestyle choices and therefore, thinking.”  Even if it’s true that Huntingtons, CF etc account for 2% of all illnesses, they account for only a tiny fraction of genetic disease.  And concluding that the remaining 98% must therefore be lifestyle related is overly simplistic.  It ignores the genetic influence on all other diseases, other congenital, and environmental causes of disease.  I will fully outline this point soon.

Similarly, “According to W.C Willett (balancing lifestyle and genomics research for disease prevention Science (296) p 695-698, 2002) only 5% of cancer and cardiovascular patients can attribute their disease to hereditary factors.”  Science is clear that genes play a significant role in the development of cardiovascular disease and most cancers, certainly greater than 5%.  Again, I will discuss this further soon.

“According to the American Institute of health, it has been estimated that 75 – 90% of all visits to primary care physicians are for stress related problems (http://www.stress.org/americas.htm). Some of the latest stress statistics causing illness as a result of toxic thinking can be found at: http://www.naturalwellnesscare.com/stress-statistics.html”  These websites not peer-reviewed, and both suffer from a blatant pro-stress bias.

You’ll also have to forgive my confusion, but Dr Leaf also wrote, “Dr H.F. Nijhout (Metaphors and the Role of Genes and Development, 1990) genes control biology and not the other way around.”  So is she saying that genes DO control development?

EVIDENCE CONTRADICTING DR LEAF

Influence Of Thought On Health

Dr Leaf has categorically stated that “75 to 98% of all illnesses are the result of our thought life” on a number of occasions.  She repeated the same statement in her most recent book so it is something she is confident in.  However, in order to be true, this fact must be consistent across the whole of humanity.

And yet, in a recent peer-reviewed publication, Mara et al state, “At any given time close to half of the urban populations of Africa, Asia, and Latin America have a disease associated with poor sanitation, hygiene, and water.” [2]  Bartram and Cairncross write that “While rarely discussed alongside the ‘big three’ attention-seekers of the international public health community—HIV/AIDS, tuberculosis, and malaria—one disease alone kills more young children each year than all three combined. It is diarrhoea, and the key to its control is hygiene, sanitation, and water.” [3]  Hunter et al state that, “diarrhoeal disease is the second most common contributor to the disease burden in developing countries (as measured by disability-adjusted life years [DALYs]), and poor-quality drinking water is an important risk factor for diarrhoea.” [4]

Toilets and clean running water have nothing to do with stress or thought.  We live in a society that essentially prevents more than half of our illnesses because of internal plumbing, with additional benefits from vaccination and population screening.  If thoughts have any effect on our health, they are artificially magnified by our clean water and sewerage systems.  Remove those factors and any effects of thought on our health disappear from significance.  Dr Leaf’s assertion that 75 to 98% of human illness is thought-related is a clear exaggeration.

Let me be clear – I understand the significance of stress on health and the economy, but it is not the cause of 75-98% of all illnesses.  I’m not sure if there is a similar study in the US, but the latest Australian data suggests that all psychological illness only counts for 8% of visits to Australian primary care physicians [5].

In terms of cancer, I don’t have time to exhaustively list every cancer but of the top four listed in the review “Cancer Statistics 2013” [6] , here are the articles that list the gene x environment interactions:

  1. PROSTATE – There are only two risk factors for prostate cancer, familial aggregation and ethnic origin. No dietary or environmental cause has yet been identified [7].  It is most likely caused by multiple genes at various loci [8].
  2. BREAST – Genes make up 25% of the risk factors for breast cancer, and significantly interacted with parity (number of children born) [9].
  3. LUNG/BRONCHUS – Lung cancer is almost exclusively linked to smoking, but nicotine addiction has a strong hereditary link (50-75% genetic susceptibility) [10].
  4. COLORECTUM – Approximately one third of colorectal cancer is genetically linked [11].

So the most common cancer is not linked to any environmental factors at all, and the others have genetic influences of 25% to more than 50%.  This is far from being 2% or 5% as Dr Leaf’s sources state.

Also in terms of heart disease, the INTERHEART trial [12] lists the following as significant risk factors, and I have listed the available gene x environment interaction studies that have been done on these too:

  1. HIGH CHOLESTEROL – Genetic susceptibility accounts for 40-60% of the risk for high cholesterol [13].
  2. DIABETES – Genetic factors account for 88% of the risk for type 1 diabetes [14].  There is a strong genetic component of the risk of type 2 diabetes with 62-70% being attributable to genetics [15, 16].
  3. SMOKING – nicotine addiction has a strong hereditary link (50-75% genetic susceptibility) [10].
  4. HYPERTENSION – While part of a much greater mix of variables, genetics are still thought to contribute between 30% and 50% to the risk of developing high blood pressure [17].

So again, while genes are a part of a complex system, it is clear from the most recent evidence that genetics account for about 50% of the risk for cardiovascular disease, which again is a marked difference between the figures that Dr Leaf is using to base her assertions on.

Atrial Natriuretic Peptide

I am aware of research that’s studied the anxiolytic properties of Atrial Natriuretic Peptide.  For example, Wiedemann et al [18] did a trial using ANP to truncate panic attacks.  However, these experiments were done on only nine subjects, and the panic attacks were induced by cholecystokinin.  As such, the numbers are too small to have any real meaning.  And the settling is completely artificial.  Just as CCK excretion does not cause us all to have panic attacks every time we eat, ANP does not provide anxiolysis in normal day to day situations.  Besides, if ANP were really effective at reducing anxiety, then why do people suffering from congestive cardiac failure, who have supraphysiological levels of circulating ANP [19] , also suffer from a higher rate of anxiety and panic disorders than the general population? [20]

The Heart As A Mini-Brain

As for Heartmath, they advance the notion of the heart being a mini-brain to give themselves credibility.  It’s really no different to an article that I read the other day from a group of gut researchers [21] – “‘The gut is really your second brain,’ Greenblatt said. ‘There are more neurons in the GI tract than anywhere else except the brain.’”  The heart as a mini-brain and the gut as a mini-brain are both figurative expressions.  Neither are meant to be taken literally.  I welcome Dr Leaf to tender any further evidence in support of her claim.

Hard-Wired For Optimism

As for being wired for optimism, the brain is likely pre-wired with a template for all actions and emotions, which is the theory of protoconsciousness [22].  Indeed, neonatal reflexes often reflect common motor patterns.  If this is true, then the brain is pre-wired for both optimism and love, but also fear.  This explains the broad role of the amygdala in emotional learning [23] including fear learning.  It also means that a neonate needs to develop both love and fear.

A recent paper showed that the corticosterone response required to learn fear is suppressed in the neonate to facilitate attachment, but with enough stress, the corticosterone levels build to the point where amygdala fear learning can commence [24].  The fear circuits are already present, only their development is suppressed.  Analysis of the cohort of children in the Bucharest Early Intervention Project showed that negative affect was the same for both groups.  However positive affect and emotional reactivity was significantly reduced in the institutionalised children [25].  If the brain is truly wired for optimism and only fear is learned, then positive emotional reactivity should be the same in both groups and the negative affect should be enhanced in the institutionalised cohort.  That the result is reversed confirms that neonates and infants require adequate stimulation of both fear and love pathways to grow into an emotionally robust child, because the brain is pre-wired for both but requires further stimulation for adequate development.

The Mind-Brain Link

If the mind controls the brain and not the other way around as Dr Leaf suggests, why do anti-depressant medications correct depression or anxiety disorders?  There is high-level evidence to show this to be true [26-28].  The same can be said for recent research to show that medications which enhance NDMA receptors have been shown to improve the extinction of fear in anxiety disorders such as panic disorder, OCD, Social Anxiety Disorder, and PTSD [29].

If the mind controls the brain and not the other way around as Dr Leaf suggests, why do some people with acquired brain injuries or brain tumours develop acute personality changes or thought disorders?  Dr Leaf has done PhD research on patients with closed head injuries and treated them in clinical settings according to her CV.  She must be familiar with this effect.

One can only conclude that there is a bi-directional effect between the brain and the stream of thought, which is at odds with Dr Leaf’s statement that the mind controls the brain and not the other way around.

FURTHER CLARIFICATION

One further thing.  Can you clarify which of Dr Leaf’s peer-reviewed articles have definitively shown the academic improvement in the cohort of 100,000 students, as you and your referee have stated?  And can you provide a list of articles which have cited Dr Leaf’s Geodesic Information Processing Model?  Google Scholar did not display any articles that had cited it, which must be an error on Google’s part.  If her theory is widely used as you say, it must have been extensively cited.

I understand that you are both busy, but I believe that I have documented a number of observations, backed by recent peer-reviewed scientific literature, which directly contradict Dr Leaf’s teaching.  I have not had a chance to touch on many, many other points of disagreement.

For the benefit of Dr Leaf’s followers, and for the scientific and Christian community at large, I would appreciate your response.

I would be grateful if you could respond to the points raised and the literature which supports it, rather than an Ad Hominem dismissal or further defense by association.

Dr C. Edward Pitt

REFERENCES

1. Fowler, G., Evidence-based practice: Tools and techniques. Systems, settings, people: Workforce development challenges for the alcohol and other drugs field, 2001: 93-107.

2. Mara, D., et al., Sanitation and health. PLoS Med, 2010. 7(11): e1000363.

3. Bartram, J. and Cairncross, S., Hygiene, sanitation, and water: forgotten foundations of health. PLoS Med, 2010. 7(11): e1000367.

4. Hunter, P.R., et al., Water supply and health. PLoS Med, 2010. 7(11): e1000361.

5. FMRC. Public BEACH data. 2010  16JUL13]; Available from: <http://sydney.edu.au/medicine/fmrc/beach/data-reports/public&gt;.

6. Siegel, R., et al., Cancer statistics, 2013. CA Cancer J Clin, 2013. 63(1): 11-30.

7. Cussenot, O. and Valeri, A., Heterogeneity in genetic susceptibility to prostate cancer. Eur J Intern Med, 2001. 12(1): 11-6.

8. Alberti, C., Hereditary/familial versus sporadic prostate cancer: few indisputable genetic differences and many similar clinicopathological features. Eur Rev Med Pharmacol Sci, 2010. 14(1): 31-41.

9. Nickels, S., et al., Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLoS Genet, 2013. 9(3): e1003284.

10. Berrettini, W.H. and Doyle, G.A., The CHRNA5-A3-B4 gene cluster in nicotine addiction. Mol Psychiatry, 2012. 17(9): 856-66.

11. Hutter, C.M., et al., Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer Res, 2012. 72(8): 2036-44.

12. Yusuf, S., et al., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 2004. 364(9438): 937-52.

13. Asselbergs, F.W., et al., Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. Am J Hum Genet, 2012. 91(5): 823-38.

14. Wu, Y.L., et al., Risk factors and primary prevention trials for type 1 diabetes. Int J Biol Sci, 2013. 9(7): 666-79.

15. Ali, O., Genetics of type 2 diabetes. World J Diabetes, 2013. 4(4): 114-23.

16. Murea, M., et al., Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud, 2012. 9(1): 6-22.

17. Kunes, J. and Zicha, J., The interaction of genetic and environmental factors in the etiology of hypertension. Physiol Res, 2009. 58 Suppl 2: S33-41.

18. Wiedemann, K., et al., Anxiolyticlike effects of atrial natriuretic peptide on cholecystokinin tetrapeptide-induced panic attacks: preliminary findings. Arch Gen Psychiatry, 2001. 58(4): 371-7.

19. Ronco, C., Fluid overload : diagnosis and management. Contributions to nephrology,. 2010, Basel Switzerland ; New York: Karger. viii, 243 p.

20. Riegel, B., et al., State of the science: promoting self-care in persons with heart failure: a scientific statement from the American Heart Association. Circulation, 2009. 120(12): 1141-63.

21. Arnold, C. Gut feelings: the future of psychiatry may be inside your stomach. 2013  [cited 2013 Aug 22]; Available from: http://www.theverge.com/2013/8/21/4595712/gut-feelings-the-future-of-psychiatry-may-be-inside-your-stomach.

22. Hobson, J.A., REM sleep and dreaming: towards a theory of protoconsciousness. Nat Rev Neurosci, 2009. 10(11): 803-13.

23. Dalgleish, T., The emotional brain. Nat Rev Neurosci, 2004. 5(7): 583-9.

24. Landers, M.S. and Sullivan, R.M., The development and neurobiology of infant attachment and fear. Dev Neurosci, 2012. 34(2-3): 101-14.

25. Bos, K., et al., Psychiatric outcomes in young children with a history of institutionalization. Harv Rev Psychiatry, 2011. 19(1): 15-24.

26. Arroll, B., et al., Antidepressants versus placebo for depression in primary care. Cochrane Database Syst Rev, 2009(3): CD007954.

27. Soomro, G.M., et al., Selective serotonin re-uptake inhibitors (SSRIs) versus placebo for obsessive compulsive disorder (OCD). Cochrane Database Syst Rev, 2008(1): CD001765.

28. Kapczinski, F., et al., Antidepressants for generalized anxiety disorder. Cochrane Database Syst Rev, 2003(2): CD003592.

29. Davis, M., NMDA receptors and fear extinction: implications for cognitive behavioral therapy. Dialogues Clin Neurosci, 2011. 13(4): 463-74.