Small. Local. Organic. Misinformed.

Maize

I like food, probably a little too much. I also value good science and correct information.

There are lots of narrative threads when it comes to the story of food, and their themes have been changing over the last few decades. Food used to be about sustenance, now it’s often about status. Food used to be about the commodity, now the narratives are reflective of food communities. In some parts of the world, the food supply is critical, where as in resource-rich western countries, we are overwhelmed with food selection.

The transition from the modern to the post-modern story of food and farms was served by the Food Movement and it’s lauded oracles like Michael Pollan. Pollen’s book, “The Omnivores Dilemma”, is revered by many as a revolutionary tome. But for every person who accepts the Food Movement mantra of “Small, local, organic”, there are just as many critics who have seen through the Food Movement’s post-truth veneer.

I read one such critique today, a long but revealing article by Marc Brazeau, a former chef and food writer from the US. Once a Food Movement follower, Marc realised that he could no longer support the core tenets and primary position of the Food Movement because of the lack of credible scientific evidence that the Food Movement is built on.

In one telling paragraph, he writes,

“Lazy critiques of industrial agriculture masquerading as critiques of biotech get away with missing the mark or getting the causality backwards because of the mystery surrounding the technology and people’s inchoate intuitions about messing with nature. They get away with sloppy logic and misinformation because most people have sentimental intuitions that farming should somehow be exempt from commerce, from technological change, from legalistic constraints – that it should somehow operate on a more pastoral logic, even as it works to serves a mass, industrialized society.”

In other words, the Food Movement and other pro-organic, anti-conventional, anti-GMO activists get things backwards, but get away with it because most people don’t really understand the technology while having an emotional attachment to “natural” things and an innate aversion to things that “mess with nature”. Even though organic farming is actually no better (and probably worse) than conventional farming, most people have a fear of the unknown and are easily swayed by propaganda that feeds into that fear, even though it’s fundamentally irrational.

“… when you start with a conception of a tomato being crossed with a fish that you got from a cartoon on a picket sign and you wind up finally understanding that it is a single well understood gene out of tens of thousands of genes being transferred from one organism to another, you wonder, why all the drama? When you realize that you share half your DNA with a banana or that an herbicide resistant soybean has been bred to express a different version of a single enzyme so that it is not affected by a single herbicide, the technology becomes a lot less mysterious and a lot less intimidating.

You learn that the Bt gene in insect resistant corn comes from a soil bacterium that’s been used for decades as an organic pesticide. You learn that the proteins that have been bred into the corn and cotton are toxic to insects that eat the plants because the protein is activated by their alkaline gut and binds to a specific receptor to damage their digestive tract. It’s harmless however to humans and other critters because it’s digested in our acidic stomachs like any other protein. And besides, we don’t have that receptor anyways.”

Reading the article reminded me of Dr Leaf’s book “Think and Eat Yourself Smart”. In fact, Brazeau’s post is an eloquent take-down of the first few chapters of “Think and Eat Yourself Smart” without intending to be so, mainly because Caroline Leaf’s book is just a Christianised version of the Omnivore’s Dilemma and the Food Movement gospel mixed with her scientifically dubious ‘cognitive neuroscience’.

Take Caroline Leaf’s definition of “Real Food”, “Real food is food grown the way God intended: fresh and nutritious, predominantly local, seasonal, grass-fed, as wild as possible, free of synthetic chemicals, whole or minimally processed, and ecologically diverse.” (Think and Eat Yourself Smart, p29) This is an appeal to antiquity and authority, an assumption that what was best for the Garden of Eden is God’s desire for how the world should be today. It’s just the “Small, local, organic” philosophy, rebranded with a Christianese slant to appeal to her audience in the western Church.

The Christianised version of the Food Movement’s romanticised post-truth ideals aren’t any better than the originals. Dr Leaf’s aspirational promotion of local, organic, macrobiotic, agro-economic tree-hugging food systems as God’s model for the modern church is idealistic inanity.

It’s time the church moved beyond the Christian rehash of popular secular philosophies and started critically assessing the teaching of those who would promote themselves as ‘experts’. As a church, we deserve the narrative that’s accurate, not the narrative that is simply appealing.

You can read the full essay by Marc Brazeau at http://fafdl.org/blog/2016/11/18/tales-of-a-recovering-pollanite/

References

Leaf CM. Think and Eat Yourself Smart. USA: Baker Books; 2016 (April 5)

Advertisements

Dr Caroline Leaf and the organic foods fallacy

Screen Shot 2014-11-28 at 1.13.59 am

Organic foods. They are amazingly popular. More than a million Australians buy organic foods regularly, and several million more buy it occasionally. The retail value of the organic market is estimated to be more than $1 billion annually. The assumption made by most people is that because it’s so popular, organic foods must be good for you, or at least have something going for them to make them worth all the hype.

Of course, just because something’s immensely popular and has a billion-dollar turnover doesn’t necessarily mean it’s beneficial (One Direction is a case-in-point).

In fact, despite organic foods being touted by their supporters as healthier, safer, and better for the environment than normal foods, actual scientific evidence fails to show any significant difference. I wrote about this earlier in the year (see: Borderline Narcissism and Organic Food). Since then, another large prospective trial deflated organic food’s bubble, with a British study showing no change in the incidence of cancer in women who always ate organic foods versus those who never ate organic foods [1].

The dearth of benefit from organic foods wouldn’t be so bad if they were just another guy in the line-up, something neutral and inert. Unfortunately, not only can organic produce be contaminated if farmed incorrectly [2, 3], but they come at an extraordinary premium, sometimes costing four times more than their conventional counterparts (Borderline Narcissism and Organic Food).

Dr Caroline Leaf is a communication pathologist and a self-titled cognitive neuroscientist. A couple of months ago, she let slip her intention to publish a book in 2015 about food. Who knows what she’ll actually say, but if today’s social media meme is anything to go by, it will likely follow the same pattern of her other teachings.

Today, she wrote, “Research shows that dark organic CHOCOLATE lowers blood pressure, improves circulation, increase HDL (“good”) cholesterol, reduce the risk of heart attack and stroke, and increases insulin … and … recent research has even suggest it may prevent weight gain!”

As I discussed recently, Dr Leaf does herself a disservice by not citing her sources. It’s very brave to write in a public forum that dark chocolate reduces the heart attack and stroke, since this could be interpreted as medical advice, which she is not qualified to give. As for the actual effects of dark chocolate, there is not a lot of quality evidence on dark chocolate on its own. A 2011 meta-analysis of general chocolate consumption on cardiovascular risk did indeed show a relative risk reduction of 37% [4]. But before you prescribe yourself two dark chocolate Lindt balls twice a day, consider that a relative risk reduction of 37% isn’t a big effect. Plus, the recommended 50 grams of 85% organic dark chocolate to attain the small benefit for your cardiovascular health contains just over 300 calories/1280 kJ (the average can of Coke contains 146 calories/ 600 kJ), and is 30% saturated fat (http://caloriecount.about.com/calories-green-blacks-organic-dark-chocolate-i110689). So any health benefit that may be associated with the poly-phenol content is likely nullified by the high saturated fat and calorie count.

What concerns me about Dr Leaf’s future foray into dietetics is that little word sitting quietly in her opening sentence: “organic”. Dr Leaf is an organic convert. But rather than act like a scientist that she claims to be, she preaches from her biases, ignoring the evidence that organic food is all hype and no substance, encouraging Christians everywhere to pay excessive amounts of money for something that’s of absolutely no benefit. Dr Leaf is welcome to eat whatever she chooses, but encouraging organic eating without clear benefit is more hindrance than help for most of her followers.

References

  1. Bradbury, K.E., et al., Organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. Br J Cancer, 2014. 110(9): 2321-6 doi: 10.1038/bjc.2014.148
  2. Mukherjee, A., et al., Association of farm management practices with risk of Escherichia coli contamination in pre-harvest produce grown in Minnesota and Wisconsin. Int J Food Microbiol, 2007. 120(3): 296-302 doi: 10.1016/j.ijfoodmicro.2007.09.007
  3. Sample, I., E coli outbreak: German organic farm officially identified. The Guardian, London, UK, 11 June 2011 http://www.theguardian.com/world/2011/jun/10/e-coli-bean-sprouts-blamed
  4. Buitrago-Lopez, A., et al., Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. BMJ, 2011. 343: d4488 doi: 10.1136/bmj.d4488

Dr Caroline Leaf: Putting thought in the right place

Following hard on the heels of her false assumption that our minds control our health, not our genes, and following the same theme, Dr Leaf had this to say today, “Everything is first a thought; the brain is being controlled with EVERY thought you think!”

Dr Caroline Leaf is a communication pathologist and a self-titled cognitive neuroscientist. Reading back through my blogs, this “thought controls the brain / mind controls matter” is a recurrent theme of hers. It is repeated multiple times in her books, like when she writes, “Thoughts influence every decision, word, action and physical reaction we make.” [1: p13] and “Our mind is designed to control the body, of which the brain is a part, not the other way around. Matter does not control us; we control matter through our thinking and choosing” [2: p33] just as a couple of examples.

So how does thought relate to the grand scheme of our brain and it’s processing? Does our thought really control our brain, or is it the other way around. Through all of the reading that I have done on neuroscience, I propose a model of the place of thought in relation to the rest of our brains information processing. It is based on the LIDA model, dual systems models, and other neuroscientific principles and processes.

We’ve all heard the phrase, “It’s just the tip of the iceberg.” It comes from the fact that icebergs are made of fresh water, which is nine-tenths less dense than seawater. As a result, ten percent of an iceberg sits above the waters surface with most of it hiding beneath.

The information processing of our brains is much the same. We may be aware of our conscious stream of thought, but there is a lot going on under the surface that makes our thoughts what they are, even though we can’t see the process underneath.

What’s going on under the surface is a complex interplay of our genes and their expression which controls the structure and function of our brains, which effects how we perceive information, how we process that information and combine it into our memories of the past, predictions of the future, and even the further perception of the present [3].

CAP v2.1.2
Genes, epigenetics and the environment
We start with the most fundamental level of our biological system, which is genetics. It becomes clear from looking at any textbook of biological sciences that genes are fundamental to who we are. From the simplest bacteria, fungi, protozoans and parasites, through to all plants, all animals and all of human kind – EVERY living thing has DNA. DNA is what defines life in the broadest sense.

Proteins are responsible for the size, shape and operation of the cell. They make each tissue structurally and functionally different, but still work together in a highly precise electrochemical synchrony. But ultimately, it’s our genes that hold all of the instructions to make every one of the proteins within our cells. Without our genes, we would be nothing more than a salty soup of random amino acids.

Epigenetics and the environment contribute to the way genes are expressed. Epigenetics are “tags” on the strand of DNA that act to promote or silence the expression of certain genes (I discuss this in more detail in chapter 12 of my book, https://www.smashwords.com/books/view/466848). Environmental factors (the components that make up the world external to our bodies) can influence genes and epigenetic markers. The environment can cause genetic mutations or new epigenetic marks that change the function of a particular gene, and depending on which cell they effect (a very active embryonic cell or a quiet adult cell) will largely determine the eventual outcome. The environment is more influential to our genetic expression than epigenetics.

Still, on average only about 25% of the expression of a complex trait is related to environmental factors. So while the environment is important, it is still outdone 3:1 by our genome.

Yes, epigenetics and the environment are important, but they influence, not control, the genome.

Perception
We live in a sensory world. The five senses are vital in providing the input we need for our brain to understand the world and meaningfully interact with it.

Different organs are needed to translate the optical, chemical or mechanical signals into electrical signals. Different parts of our brain then interpret these signals and their patterns.

Our genes significantly influence this process. For example, if someone is born with red-green colour blindness then how he or she interprets the world will always be subtly different to someone with normal vision. Or a person born with congenital deafness will always interpret his or her environment in a different way to someone with full hearing. I’ve highlighted these two conditions because they provide stark examples to help demonstrate the point, but there are many unique genetic expressions in each of the five senses that subtly alter the way each of us perceives the world around us.

So while we may all have the same photons of light hitting our retinas, or the same pressure waves of sound reaching our ears or touch on our skin, how our brains receive that information is slightly different for every individual. The information from the outside world is received by our sensory organs, but it is perceived by our brain, and even small differences in perception can have a big impact on the rest of the system.

Personality
Personality is “the combination of characteristics or qualities that form an individual’s distinctive character” [4]. Formally speaking, personality is, “defined as constitutionally based tendencies in thoughts, behaviors, and emotions that surface early in life, are relatively stable and follow intrinsic paths of development basically independent of environmental influences.” [5]

Professor Gregg Henriques explained it well in Psychology Today, “Personality traits are longstanding patterns of thoughts, feelings, and actions which tend to stabilize in adulthood and remain relatively fixed. There are five broad trait domains, one of which is labeled Neuroticism, and it generally corresponds to the sensitivity of the negative affect system, where a person high in Neuroticism is someone who is a worrier, easily upset, often down or irritable, and demonstrates high emotional reactivity to stress.” [6] The other four personality types are Extraversion, Agreeableness, Conscientiousness, and Openness to Experience.

Gene x environment studies suggest that personality is highly heritable, with up to 60% of personality influenced by genetics [7], predominantly through genes involved in the serotonin [8] and dopamine systems [9, 10]. The “non-shared environment” (influences outside of the home environment) contributes heavily to the remainder [11, 12].

Personality is like a filter for a camera lens, shaping the awareness of our emotional state for better or worse, thus influencing the flow on to our feelings (the awareness of our emotions), our thoughts, and our actions.

Physiology
Watkins describes physiology as streams of data that are provided from the different parts of your body, like the heart rate, your breathing rate, the oxygen in your blood, the position of your joints, the movement of your joints, even the filling of your bladder telling you that you need a break soon.

All of these signals are constantly being generated, and collated in different parts of the brain. Some researchers consider them positive and negative depending on the data stream and the signal its providing. They coalesce into emotion [13].

Emotion
According to Watkins, “emotion” is the sum of all the data streams of physiology, or what he described as “E-MOTIONEnergy in MOTION.” [13] In this context, think of emotion as a bulls-eye spirit-level of our body systems. The different forces of our physiology change the “level” constantly in different directions. Emotion is the bubble that marks the central point, telling us how far out of balance we are.

In the interest of full disclosure, I should mention that although emotion is a familiar concept, the work of literally thousands of brilliant minds has brought us no closer to a scientifically validated definition of the word “emotion”. Some psychologists and researchers consider it vague and unscientific, and would prefer that it not be used altogether [14].

I’ve retained it because I think it’s a well-recognised word that conceptually describes the balance of physiological forces.

Feelings
“Feelings” are the perception of emotion.

I discussed earlier in the chapter that what we perceive is different to what we “see” because the subtle genetic differences in our eyes and brains causes the information to be processed differently between individuals. The same applies to the perception of our emotion.

As I wrote earlier, personality is largely determined by our genetics with contributions from our environment [11, 12]. The emotional signal is filtered by our personality to give rise to our feelings. Classically, an optimistic personality is going to bias the emotional input in a positive, adaptive way while a pessimist or neurotic is going to bias the emotional signal in a maladaptive way

That’s not to say that an optimist can’t have depressed feelings, or a neurotic can’t have happy feelings. In the same way that a coloured lens will allow a lot of light through but filter certain wavelengths out, most of our emotional state of being will come through the filter of our personality but the feelings will be subtly biased one way or another.

Executive Functions
Executive function of the brain is defined as a complex cognitive process requiring the co-ordination of several sub-processes to achieve a particular goal [15]. These sub-processes can be variable but include working memory, attention, goal setting, maintaining and monitoring of goal directed action and action inhibition. In order to achieve these goals, the brain requires flexibility and coordination of a number of networks and lobes, although mainly the prefrontal cortex, parietal cortex, anterior cingulate and basal ganglia, and the while matter tracts that connect them.

Executive functions process the incoming information and decide on what goals are best given the context, then plan the goals, execute them to the motor cortices, and monitor the action. Research work from Marien et al [16] demonstrates that unconscious/implicit goals can divert resources away from conscious goals especially if it is emotionally salient or otherwise strongly related. They also confirm that conscious awareness is not necessary for executive function but that implicit goals can be formed and executed without conscious involvement.

Thoughts
Thoughts are essentially a stream of data projected into our conscious space. Baars [17, 18] noted that the conscious broadcast comes into working memory which then engages a wider area of the cerebral cortex necessary to most efficiently process the information signal. We perceive thought most commonly as either pictures or sounds in our head (“the inner monologue”), which corresponds to the slave systems of working memory. When you “see” an image in your mind, that’s the visuospatial sketchpad. When you listen to your inner monologue, that’s your phonological loop. When a song gets stuck in your head, that’s your phonological loop as well, but on repeat mode.

There is another slave system that Baddeley included in his model of working memory called the episodic buffer, “which binds together complex information from multiple sources and modalities. Together with the ability to create and manipulate novel representations, it creates a mental modeling space that enables the consideration of possible outcomes, hence providing the basis for planning future action.” [19]

Deep thinking is a projection from your brains executive systems (attention or the default mode network) to the central executive of working memory, which then recalls the relevant information from long-term memory and directs the information through the various parts of the slave systems of working memory to process the complex details involved. For example, visualizing a complex scene of a mountain stream in your mind would involve the executive brain directing the central executive of working memory to recall information about mountains and streams and associated details, and project them into the visuospatial sketchpad and phonological loop and combine them via the episodic buffer. The episodic buffer could also manipulate the scene if required to create plans, or think about the scene in new or unexpected ways (like imagining an elephant riding a bicycle along the riverbank).

Even though the scene appears as one continuous episode, it is actually broken up into multiple cognitive cycles, in the same way that images in a movie appear to be moving, but are really just multiple still frames played in sequence.

Action
Action is the final step in the process, the output, our tangible behaviour

Our behaviour is not the direct result of conscious thought, or our will (as considered in the sense of our conscious will).

We discussed this before when we talked about our choices in chapter 1. There are two main pathways that lead from sensory input to tangible behaviour – various automated pathways that take input from the thalamus, deep in the brain, and sent to motor circuits in the supplementary motor area and motor cortex of the brain. These can be anything from evasive “reflex” actions[1] to rehearsed, habituated motor movements, like driving. Then there is the second pathway, coming from the executive areas of our brain, that plan out options for action, which are reviewed by the pre-supplemental motor area and the default mode network.

This second pathway is amenable to conscious awareness. Like thought, the projection of different options for action into our consciousness helps to engage a wider area of cerebral cortex to process the data. Most of the possible plans for action have already been rejected by the implicit processing of our executive brain before consciousness is brought in to help. Once an option has been selected, the action is sent to the pre-supplementary motor area, the supplementary motor area, the basal ganglia and finally the motor cortex.

According to the model proposed by Bonn [20], the conscious network has some feedback from the control network of our brain, providing real time context to actions about to be executed, and a veto function, stopping some actions at the last minute before they are carried out. This is largely a function of the basal ganglia [21], with some assistance from working memory.

So as you can see, according to the CAP model, conscious thoughts are one link of a longer chain of neurological functions between stimulus and action – simply one cog in the machine. Thoughts are dependent on a number of processes that are both genetically and environmentally determined, beyond our conscious control. It’s simply wrong to assume that thoughts control the brain.

Dr Leaf is welcome to her opinion, but it is in contradiction to the overwhelming majority of neuroscientific knowledge

References

  1. Leaf, C., Who Switched Off My Brain? Controlling toxic thoughts and emotions. 2nd ed. 2009, Inprov, Ltd, Southlake, TX, USA:
  2. Leaf, C.M., Switch On Your Brain : The Key to Peak Happiness, Thinking, and Health. 2013, Baker Books, Grand Rapids, Michigan:
  3. Hao, X., et al., Individual differences in brain structure and resting brain function underlie cognitive styles: evidence from the embedded figures test. PLoS One, 2013. 8(12): e78089 doi: 10.1371/journal.pone.0078089
  4. Oxford Dictionary of English – 3rd Edition, 2010, Oxford University Press: Oxford, UK.
  5. De Pauw, S.S., et al., How temperament and personality contribute to the maladjustment of children with autism. J Autism Dev Disord, 2011. 41(2): 196-212 doi: 10.1007/s10803-010-1043-6
  6. Henriques, G. (When) Are You Neurotic? Theory of Knowledge: Psychology Today; 2012, 23 Nov 2012 [cited 2013 23 Nov 2012]; Available from: http://www.psychologytoday.com/blog/theory-knowledge/201211/when-are-you-neurotic.
  7. Vinkhuyzen, A.A., et al., Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion. Transl Psychiatry, 2012. 2: e102 doi: 10.1038/tp.2012.27
  8. Caspi, A., et al., Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry, 2010. 167(5): 509-27 doi: 10.1176/appi.ajp.2010.09101452
  9. Felten, A., et al., Genetically determined dopamine availability predicts disposition for depression. Brain Behav, 2011. 1(2): 109-18 doi: 10.1002/brb3.20
  10. Chen, C., et al., Contributions of dopamine-related genes and environmental factors to highly sensitive personality: a multi-step neuronal system-level approach. PLoS One, 2011. 6(7): e21636 doi: 10.1371/journal.pone.0021636
  11. Krueger, R.F., et al., The heritability of personality is not always 50%: gene-environment interactions and correlations between personality and parenting. J Pers, 2008. 76(6): 1485-522 doi: 10.1111/j.1467-6494.2008.00529.x
  12. Johnson, W., et al., Beyond Heritability: Twin Studies in Behavioral Research. Curr Dir Psychol Sci, 2010. 18(4): 217-20 doi: 10.1111/j.1467-8721.2009.01639.x
  13. Watkins, A. Being brilliant every single day – Part 1. 2012 [cited 2 March 2012]; Available from: http://www.youtube.com/watch?v=q06YIWCR2Js.
  14. Dixon, T., “Emotion”: The History of a Keyword in Crisis. Emot Rev, 2012. 4(4): 338-44 doi: 10.1177/1754073912445814
  15. Elliott, R., Executive functions and their disorders Imaging in clinical neuroscience. British Medical Bulletin, 2003. 65(1): 49-59
  16. Marien, H., et al., Unconscious goal activation and the hijacking of the executive function. J Pers Soc Psychol, 2012. 103(3): 399-415 doi: 10.1037/a0028955
  17. Baars, B.J. and Franklin, S., How conscious experience and working memory interact. Trends Cogn Sci, 2003. 7(4): 166-72 http://www.ncbi.nlm.nih.gov/pubmed/12691765 ; http://bit.ly/1a3ytQT
  18. Baars, B.J., Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in brain research, 2005. 150: 45-53
  19. Repovs, G. and Baddeley, A., The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience, 2006. 139(1): 5-21 doi: 10.1016/j.neuroscience.2005.12.061
  20. Bonn, G.B., Re-conceptualizing free will for the 21st century: acting independently with a limited role for consciousness. Front Psychol, 2013. 4: 920 doi: 10.3389/fpsyg.2013.00920
  21. Beste, C., et al., Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia, 2010. 48(2): 366-73 doi: 10.1016/j.neuropsychologia.2009.09.023

[1] We often describe rapid unconscious movements, especially to evade danger or to protect ourselves, as “reflexes”. Medically speaking, a true reflex is a spinal reflex, like the knee-jerk reflex. When a doctor taps the knee with the special hammer, the sudden stretch of the tendon passes a nerve impulse to the spinal cord, which is then passed to the muscle, which makes it contract. A true reflex doesn’t go to the brain at all.

Dr Caroline Leaf and the matter of mind over genes

Screen Shot 2014-11-07 at 8.13.45 pm

I think I might have to throw away my genetics textbook.

I was always taught that genes were the main driver behind health and disease, and I always thought it was a pretty good theory.

But not according to Dr Caroline Leaf, communication pathologist and self-titled cognitive neuroscientist, who said on her social media feeds today, “Our health is not controlled by genetics – our health is controlled by our mind.”

Taking her statement at face value, she appears to be saying that genes have nothing to do with our health. Dr Leaf has made some asinine statements in the past, but to suggest that genes are irrelevant to human health seemed so stupid that no one in their right mind would suggest such a thing.

Perhaps I was taking her statement the wrong way? I wanted to make sure I didn’t jump to any rash conclusions about Dr Leaf’s statement, so I pondered it at length. Could she be referring to ‘control’ in the absolute sense? How much control do genes have on our health? What about the mind?

After deliberating for a while, I still came to the conclusion that Dr Leaf’s statement was nonsense.

Unfortunately, Dr Leaf’s statement is, like so many of her previous Facebook memes, so vague as to be misleading. The meaning of ‘health’ and ‘controlled’ could be taken so many ways … which part of our health? How much regulation constitutes ‘control’? What about genetics?

Looking at her statement in more depth, it becomes clear that no matter which way Dr Leaf meant it, it’s still wrong. For example, all of human health is controlled, in part, by genetics. That’s because life itself is controlled by genetics. The human genome provides a blueprint for the construction of all of the proteins in all of the cells in our entire body. The expression of those genes determines exactly how our body will run. If the genes are wrong, if the translation of the gene code into a protein is wrong, or if too much or too little of a protein is made, all determines whether our body is functioning at its optimum level or not.

The stimulus for the expression of our genes is influenced by the environment in which we live. If I go out into the sun a lot, the UV light triggers my skin cells to make the protein melanin, which makes my skin go darker and helps to provide some protection against the damaging effects of the UV light.

While the environment plays a part of the expression of some genes, it’s wrong to say that genetics doesn’t control the process. If I go into the sun too much, I risk developing a melanoma, because the sun damages the genes in some of my skin cells, causing them to grow without control.

Genes are still responsible for the disease itself. Sometimes the trigger is from the environment, sometimes it’s not. There are some people with genes for melanoma who don’t need an environmental trigger, because they develop melanoma on skin that’s exposed to very little UV light, like the genital skin.

So fundamentally, even taking the environment into account, our health is controlled by our genetics.

The other part of Dr Leaf’s meme is also wrong. Our health is not controlled by our mind. Our genes are influenced by “the environment”, which according to the seminal paper by Ottman, “The environmental risk factor can be an exposure, either physical (e.g., radiation, temperature), chemical (e.g., polycyclic aromatic hydrocarbons), or biological (e.g., a virus); a behavior pattern (e.g., late age at first pregnancy); or a “life event” (e.g., job loss, injury). This is not intended as an exhaustive taxonomy of risk factors, but indicates as broad a definition as possible of environmental exposures.” [1]

Even if one considers the mind as part of the sub classification of “a behavior pattern”, it’s still pretty clear that most of the factors that make up our environment are not related to our mind at all but are related to the external world, of which we have minimal or no control over. Sure, we make choices, but our choices aren’t truly free. They’re constrained by the environment in which we find ourselves. In the same way, our mind may have some tiny influence on our health, but only insofar as our environment and our genes will allow.

When it all boils down, this meme of Dr Leaf’s is rested on her foundational presumption that our mind can control matter, a very strong theme throughout her most recent book [2], but which is still preposterous. Our thoughts are simply a function of our brain, which is in turn determined by the function of our nerve cells, which is in turn a function of our genes and their expression.

Our mind doesn’t control matter. Matter controls our mind.

I can keep my genetics textbooks after all.

References

  1. Ottman, R., Gene-environment interaction: definitions and study designs. Prev Med, 1996. 25(6): 764-70 http://www.ncbi.nlm.nih.gov/pubmed/8936580
  2. Leaf, C.M., Switch On Your Brain : The Key to Peak Happiness, Thinking, and Health. 2013, Baker Books, Grand Rapids, Michigan:

Dr Caroline Leaf and the genetic remodelling myth

Screen Shot 2014-08-29 at 5.13.50 pm

We are all slowly mutating!

Yep, it’s true. Not to the same extent as you might see in shows like X-Files or Dr Who, but still, our DNA is slowly accumulating permanent changes to the pattern of the genes that it contains. Thankfully, it’s only in science fiction that the mutations result in zombie apocalypse scenarios.

Dr Caroline Leaf is a Communication Pathologist and a self-titled cognitive neuroscientist. Still glowing from the unquestioning adulation of her faithful followers at the Switch On Your Brain conference last week, Dr Leaf has hit social media again. Most of her posts have been innocuous quotes that look borrowed from Pinterest, but today, Dr Leaf has ventured into the pseudoscientific again by claiming that, “Our genes are constantly being remodeled by our response to life’s experiences.”

Unless your response to life’s experiences is to stand next to an industrial microwave generator or live in a nuclear waste dump, Dr Leaf’s statement is pure fiction. Dr Leaf confuses the mutation of our genes with the expression of our genes.

The only way our genes actually change is through mutation. A mutation is a permanent change in the sequence of the DNA molecule. A genetic mutation is a permanent change in the DNA sequence that encodes a gene. DNA is constantly mutating, because of environmental damage, chemical degradation, genome instability and errors in DNA copying or repair [1: p97]. Still, the actual rate of DNA mutation is about 1 in 30 million base pairs [2]. So DNA is very stable, and changes for a number of reasons, only some of which are related to our external environment. And as I alluded to just before, slightly tongue-in-cheek, our responses are not the main contributor to these environmental influences, unless we deliberately expose ourselves to ionizing radiation or smoke cigarettes. Our DNA does not change because of our thought processes as Dr Leaf advocates [3].

What does change more readily is the expression of those genes. Gene expression is the cell machinery reading the genes and making the proteins that the genes encode. The genes are expressed to make the proteins needed for the cell to maintain its function. Which genes are expressed is dependant on the cell’s stage of development and the environment it finds itself in. For example, when the body encounters a high level of dietary iron, a series of steps activates a gene to promote the production of ferritin, a protein that helps to carry iron in the blood stream [1: p375-6]. Gene expression isn’t solely dependent on our environment though, because an embryo is expressing genes like crazy in order to make the proteins to build a human being, but the gene expression in an embryo is largely following a pre-determined time course, not the environment [4] (and certainly not because of responses to life’s experiences).

In summary, our genes are controlled by a myriad of different factors, nearly all of which have nothing to do with our responses or choices. Our genes are not changed by our choices or our responses. Our genes may be mutating, but God designed our cells with mechanisms to repair them. Our genes are not being remodelled by our responses. That’s the realm of science fiction.

References

  1. Strachan, T. and Read, A., Human Molecular Genetics. 4th ed. 2011, Garland Science, New York, USA:
  2. Xue, Y., et al., Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree. Curr Biol, 2009. 19(17): 1453-7 doi: 10.1016/j.cub.2009.07.032
  3. Leaf, C.M., Switch On Your Brain : The Key to Peak Happiness, Thinking, and Health. 2013, Baker Books, Grand Rapids, Michigan:
  4. Ralston, A. and Shaw, K. Gene Expression Regulates Cell Differentiation. Nature Education, 2008. 1(1): 127; http://www.nature.com/scitable/topicpage/gene-expression-regulates-cell-differentiation-931

Like to read more about Dr Leaf’s teaching and how it compares to current science? Download the free eBook HOLD THAT THOUGHT, Reappraising The Work Of Dr Caroline Leaf

Borderline Narcissism and Organic Food

Every time I go to the supermarket, I’m always amazed at the every-growing supply of “organic” products.  In fact, not just the supermarket, but everywhere I go, one of the first things out of the mouth of the sales assistant is, “and it’s organic.”

Organic food has gone gang-busters in the last decade.  It is currently worth around $200–$250 million per year domestically and a further $50–$80 million per year in exports, with an expected annual growth of up to 60 per cent. In 2010, the retail value of the organic market was estimated to be at least $1 billion.

Consumer demand for organic food is growing at a rate of 20–30 per cent per year, with retail sales increasing 670 per cent between 1990 and 2001–02. It is estimated that more than six out of every ten Australian households now buy organic foods on occasion (Better Health Channel, 2013).

It’s not cheap either.  I did a single price point comparison to see what the difference was between similar organic and conventional foods.  A 411g can of “Muir Glen” brand diced organic tomatoes on Organics Australia Online (http://www.organicsaustraliaonline.com.au/category173_1.htm) cost $4.28.  An equivalent product, “Annalisa” brand 400g can of diced tomatoes cost $1.00 at Woolworths Online (http://www2.woolworthsonline.com.au/#url=/Shop/SearchProducts%3Fsearch%3Ddiced%2Btomato%2Bcanned).

Allowing for the slight difference in size, that’s still a 400% premium, just because something is tagged as organic.

Given the massive price premiums and it’s overwhelming popularity, you’d assume there is something miraculous about organic food.  Like, it possessed some magical healing properties, or that it was the elixir of life.

Yet in the hard light of day, the aura of organic food turns out to be a shimmering mirage.  When critically examined by the power of science, organic food is found to be lacking.  It’s all hype, and no substance.

So why do people buy and consume organic produce?  Usually because they believe that organic foods are healthier (that is, they have more nutrients) or safer (or they believe that there are less pesticides or chemicals), that organic foods taste better, and that organic farming is better for the environment (Hughner, McDonagh, Prothero, Shultz, & Stanton, 2007).

But as it turns out, organic foods have essentially the same nutritional content as their conventionally farmed equivalents (Dangour et al., 2009).  There is some evidence that there may be less pesticide residue on organically grown foods, but there is no significant difference in the risk of each group exceeding the overcautious Maximum Residue Limit (Smith-Spangler et al., 2012).  So organic foods can’t be claimed to be significantly safer than conventional foods either.

The other positive attribute pushed by organic proponents is that organic farming is much better for the environment than conventional farming.  But far from the stereotype, organic foods aren’t saving the planet from the evil greed of the multi-national corporations and their earth-raping large scale conventional farming techniques.

Tuomisto, Hodge, Riordan, and Macdonald (2012) concluded their meta-analysis of research into European farming by saying, “This meta-analysis has showed that organic farming in Europe has generally lower environmental impacts per unit of area than conventional farming, but due to lower yields and the requirement to build the fertility of land, not always per product unit. The results also showed a wide variation between the impacts within both farming systems. There is not a single organic or conventional farming system, but a range of different systems, and thus, the level of many environmental impacts depend more on farmers’ management choices than on the general farming systems.”

In other words, the impact on the planet has nothing to do with the food that’s grown, but the farmers who grow it.

That’s three strikes for organic food.  It isn’t healthier, safer, or better for the planet.  There’s nothing to organic food that justifies the enormous premium that is charged for them, except the egocentric inflation that comes from believing that “being organic” is superior.

Like going to the Opera or driving a Prius, “being organic” is just another outlet for borderline narcissism.

The take home message: If you care for your health or the environment, buy conventionally farmed food.  There’s no difference to organic food, except the price.

References

Better Health Channel. (2013, Oct 17). Organic Food.   Retrieved Jan 24, 2014, from http://www.betterhealth.vic.gov.au/bhcv2/bhcarticles.nsf/pages/organic_food

Dangour, A. D., Dodhia, S. K., Hayter, A., Allen, E., Lock, K., & Uauy, R. (2009). Nutritional quality of organic foods: a systematic review. Am J Clin Nutr, 90(3), 680-685. doi: 10.3945/ajcn.2009.28041

Hughner, R. S., McDonagh, P., Prothero, A., Shultz, C. J., & Stanton, J. (2007). Who are organic food consumers? A compilation and review of why people purchase organic food. Journal of consumer behaviour, 6(2‐3), 94-110.

Smith-Spangler, C., Brandeau, M. L., Hunter, G. E., Bavinger, J. C., Pearson, M., Eschbach, P. J., . . . Stave, C. (2012). Are organic foods safer or healthier than conventional alternatives? A systematic review. Ann Intern Med, 157(5), 348-366.

Tuomisto, H. L., Hodge, I. D., Riordan, P., & Macdonald, D. W. (2012). Does organic farming reduce environmental impacts?–A meta-analysis of European research. Journal of environmental management, 112, 309-320.

Dr Caroline Leaf – Contradicted by the latest research

This is my most popular post by far.  I truly appreciate the support and interest in this post, but I’ve discovered and documented a lot more about Dr Leaf’s ministry in the last two years.  I welcome you to read this post, but if you’d like a more current review of the ministry of Dr Caroline Leaf, a new and improved version is here:
Dr Caroline Leaf – Still Contradicted by the Latest Evidence, Scripture & Herself

* * * * *

Mr Mac Leaf, the husband of Dr Caroline Leaf, kindly took the time to respond to my series of posts on the teachings of Dr Leaf at Kings Christian Centre, on the Gold Coast, Australia, earlier this month. As I had intended, and as Mr Leaf requested, I published his  reply, complete and unabridged (here).

This blog is my reply.  It is heavily researched and thoroughly referenced.  I think it’s fair to say that while Dr Leaf draws her conclusions from some scientific documents, there is more than enough research that contradicts her statements and opinions.  I have only listed a small fraction, and only on some of the points she raised.

In fairness, the fields of neurology and neuroscience are vast and rapidly expanding, and it is impossible for one person to cover all of the literature on every subject.  This applies to myself and Dr Leaf.  However, I believe that the information I have read, and referenced from the latest peer-reviewed scholarly works, do not support Dr Leaf’s fundamental premises.  If I am correct, then the strength and validity of Dr Leaf’s published works should be called into question.

As before, I welcome any reply or rebuttal that Dr Leaf wishes to make, which I will publish in full if she requests.  In the interests of healthy public debate, and encouraging people to make their own informed decisions on the teachings of Dr Leaf, any comments regarding the response of Mr Leaf, Dr Leaf or myself, are welcome provided they are constructive.

This is a bit of a lengthy read, but I hope it is worthwhile.

Dear Mr Leaf,

Thank you very much for taking the time out to reply to some of the points raised in my blog.  I am more than happy to publish your response, and to publish any response you wish to make public.

ON INFORMED DECISIONS

I published my blog posts to open up discussion on the statements made by Dr Leaf at the two meetings that I attended at Kings Christian Centre on the Gold Coast.  As you rightly point out, people should be able to make informed decisions.  A robust discussion provides the information required for people to make an informed choice.  Any contributions to this discussion from either yourself or Dr Leaf would be most welcome.

I apologise if you interpreted my blogs as judgemental, or if you believe there are any misunderstandings.  You may or may not have read my final two paragraphs from the third post, in which I acknowledged that I may have misunderstood where she was coming from, but that I would welcome her response.  If there were any misunderstandings, it is likely because Dr Leaf did not make any attempt to reference any of the statements she made on the day.  You may argue that she was speaking to a lay audience, and referencing is therefore not necessary.  However, I have been to many workshops for the lay public by university professors, who have extensively referenced their information during their presentations.  A lay audience does not preclude providing references.  Rather, it augments the speakers authority and demonstrates the depth of their knowledge on the subject at hand.

YOUR DEFENCE

It’s interesting that you feel the need to resort to defence by association, and Ad Hominem dismissal as your primary counter to the points I raised.

Can you clarify how attending the same university as Dr Christaan Barnard, or a Nobel laureate, endorses her arguments or precludes her from criticism?  I attended the University of Queensland where Professor Ian Frazer was based.  He developed the Human Papilloma Virus vaccine and was the 2006 Australian of the Year.  Does that association enhance my argument?

Can you also clarify why a reference from a colleague was preferred to letting Dr Leaf’s statements and conclusions speak for themselves?  Dr Amua-Quarshie’s CV is certainly very impressive, no doubt about that, although he doesn’t list the papers he’s published.  (I’m assuming that to hold the title of Adjunct Professor, he’s published peer-reviewed articles.  Is he willing to list them, for the record?)

Whatever his credentials, his endorsement means very little, since both Dr Leaf and Dr Amua-Quarshie would know from their experience in research that expert opinion is one of the lowest forms of evidence, second worst only to testimonials [1].  Further, both he and Dr Leaf are obviously close friends which introduces possible bias.  His endorsement is noteworthy, but it can not validate every statement made by Dr Leaf.  Her statements should stand up on their own through the rigors of critical analysis.

On the subject of evidence, disparaging your critics is not a substitute for answering their criticism.  Your statement, “By your comments it is obvious that you have not kept up to date with the latest Scientific research” is an assumption that is somewhat arrogant, and ironic since Dr Leaf is content to use superseded references dating back to 1979 to justify her current hypotheses.

DR LEAF’S EVIDENCE

In the blog to which you referred, Dr Leaf makes a number of statements that are intended to support her case.  These include the following.

“A study by the American Medical Association found that stress is a factor in 75% of all illnesses and diseases that people suffer from today.”  She fails to reference this study.

“The association between stress and disease is a colossal 85% (Dr Brian Luke Seaward).”   But again, she fails to reference the quote.

“The International Agency for Research on Cancer and the World Health Organization has concluded that 80% of cancers are due to lifestyles and are not genetic, and they say this is a conservative number (Cancer statistics and views of causes Science News Vol.115, No 2 (Jan.13 1979), p.23).”  It’s good that she provides a reference to her statement.  However, referencing a journal on genetics from 1979 is the equivalent of attempting to use the land-speed record from 1979 to justify your current preference of car.  The technology has advanced significantly, and genetic discoveries are lightyears ahead of where they were more than three decades ago.

“According to Dr Bruce Lipton (The Biology of Belief, 2008), gene disorders like Huntington’s chorea, beta thalassemia, cystic fibrosis, to name just a few, affect less than 2% of the population. This means the vast majority of the worlds population come into this world with genes that should enable the to live a happy and healthy life. He says a staggering 98% of diseases are lifestyle choices and therefore, thinking.”  Even if it’s true that Huntingtons, CF etc account for 2% of all illnesses, they account for only a tiny fraction of genetic disease.  And concluding that the remaining 98% must therefore be lifestyle related is overly simplistic.  It ignores the genetic influence on all other diseases, other congenital, and environmental causes of disease.  I will fully outline this point soon.

Similarly, “According to W.C Willett (balancing lifestyle and genomics research for disease prevention Science (296) p 695-698, 2002) only 5% of cancer and cardiovascular patients can attribute their disease to hereditary factors.”  Science is clear that genes play a significant role in the development of cardiovascular disease and most cancers, certainly greater than 5%.  Again, I will discuss this further soon.

“According to the American Institute of health, it has been estimated that 75 – 90% of all visits to primary care physicians are for stress related problems (http://www.stress.org/americas.htm). Some of the latest stress statistics causing illness as a result of toxic thinking can be found at: http://www.naturalwellnesscare.com/stress-statistics.html”  These websites not peer-reviewed, and both suffer from a blatant pro-stress bias.

You’ll also have to forgive my confusion, but Dr Leaf also wrote, “Dr H.F. Nijhout (Metaphors and the Role of Genes and Development, 1990) genes control biology and not the other way around.”  So is she saying that genes DO control development?

EVIDENCE CONTRADICTING DR LEAF

Influence Of Thought On Health

Dr Leaf has categorically stated that “75 to 98% of all illnesses are the result of our thought life” on a number of occasions.  She repeated the same statement in her most recent book so it is something she is confident in.  However, in order to be true, this fact must be consistent across the whole of humanity.

And yet, in a recent peer-reviewed publication, Mara et al state, “At any given time close to half of the urban populations of Africa, Asia, and Latin America have a disease associated with poor sanitation, hygiene, and water.” [2]  Bartram and Cairncross write that “While rarely discussed alongside the ‘big three’ attention-seekers of the international public health community—HIV/AIDS, tuberculosis, and malaria—one disease alone kills more young children each year than all three combined. It is diarrhoea, and the key to its control is hygiene, sanitation, and water.” [3]  Hunter et al state that, “diarrhoeal disease is the second most common contributor to the disease burden in developing countries (as measured by disability-adjusted life years [DALYs]), and poor-quality drinking water is an important risk factor for diarrhoea.” [4]

Toilets and clean running water have nothing to do with stress or thought.  We live in a society that essentially prevents more than half of our illnesses because of internal plumbing, with additional benefits from vaccination and population screening.  If thoughts have any effect on our health, they are artificially magnified by our clean water and sewerage systems.  Remove those factors and any effects of thought on our health disappear from significance.  Dr Leaf’s assertion that 75 to 98% of human illness is thought-related is a clear exaggeration.

Let me be clear – I understand the significance of stress on health and the economy, but it is not the cause of 75-98% of all illnesses.  I’m not sure if there is a similar study in the US, but the latest Australian data suggests that all psychological illness only counts for 8% of visits to Australian primary care physicians [5].

In terms of cancer, I don’t have time to exhaustively list every cancer but of the top four listed in the review “Cancer Statistics 2013” [6] , here are the articles that list the gene x environment interactions:

  1. PROSTATE – There are only two risk factors for prostate cancer, familial aggregation and ethnic origin. No dietary or environmental cause has yet been identified [7].  It is most likely caused by multiple genes at various loci [8].
  2. BREAST – Genes make up 25% of the risk factors for breast cancer, and significantly interacted with parity (number of children born) [9].
  3. LUNG/BRONCHUS – Lung cancer is almost exclusively linked to smoking, but nicotine addiction has a strong hereditary link (50-75% genetic susceptibility) [10].
  4. COLORECTUM – Approximately one third of colorectal cancer is genetically linked [11].

So the most common cancer is not linked to any environmental factors at all, and the others have genetic influences of 25% to more than 50%.  This is far from being 2% or 5% as Dr Leaf’s sources state.

Also in terms of heart disease, the INTERHEART trial [12] lists the following as significant risk factors, and I have listed the available gene x environment interaction studies that have been done on these too:

  1. HIGH CHOLESTEROL – Genetic susceptibility accounts for 40-60% of the risk for high cholesterol [13].
  2. DIABETES – Genetic factors account for 88% of the risk for type 1 diabetes [14].  There is a strong genetic component of the risk of type 2 diabetes with 62-70% being attributable to genetics [15, 16].
  3. SMOKING – nicotine addiction has a strong hereditary link (50-75% genetic susceptibility) [10].
  4. HYPERTENSION – While part of a much greater mix of variables, genetics are still thought to contribute between 30% and 50% to the risk of developing high blood pressure [17].

So again, while genes are a part of a complex system, it is clear from the most recent evidence that genetics account for about 50% of the risk for cardiovascular disease, which again is a marked difference between the figures that Dr Leaf is using to base her assertions on.

Atrial Natriuretic Peptide

I am aware of research that’s studied the anxiolytic properties of Atrial Natriuretic Peptide.  For example, Wiedemann et al [18] did a trial using ANP to truncate panic attacks.  However, these experiments were done on only nine subjects, and the panic attacks were induced by cholecystokinin.  As such, the numbers are too small to have any real meaning.  And the settling is completely artificial.  Just as CCK excretion does not cause us all to have panic attacks every time we eat, ANP does not provide anxiolysis in normal day to day situations.  Besides, if ANP were really effective at reducing anxiety, then why do people suffering from congestive cardiac failure, who have supraphysiological levels of circulating ANP [19] , also suffer from a higher rate of anxiety and panic disorders than the general population? [20]

The Heart As A Mini-Brain

As for Heartmath, they advance the notion of the heart being a mini-brain to give themselves credibility.  It’s really no different to an article that I read the other day from a group of gut researchers [21] – “‘The gut is really your second brain,’ Greenblatt said. ‘There are more neurons in the GI tract than anywhere else except the brain.’”  The heart as a mini-brain and the gut as a mini-brain are both figurative expressions.  Neither are meant to be taken literally.  I welcome Dr Leaf to tender any further evidence in support of her claim.

Hard-Wired For Optimism

As for being wired for optimism, the brain is likely pre-wired with a template for all actions and emotions, which is the theory of protoconsciousness [22].  Indeed, neonatal reflexes often reflect common motor patterns.  If this is true, then the brain is pre-wired for both optimism and love, but also fear.  This explains the broad role of the amygdala in emotional learning [23] including fear learning.  It also means that a neonate needs to develop both love and fear.

A recent paper showed that the corticosterone response required to learn fear is suppressed in the neonate to facilitate attachment, but with enough stress, the corticosterone levels build to the point where amygdala fear learning can commence [24].  The fear circuits are already present, only their development is suppressed.  Analysis of the cohort of children in the Bucharest Early Intervention Project showed that negative affect was the same for both groups.  However positive affect and emotional reactivity was significantly reduced in the institutionalised children [25].  If the brain is truly wired for optimism and only fear is learned, then positive emotional reactivity should be the same in both groups and the negative affect should be enhanced in the institutionalised cohort.  That the result is reversed confirms that neonates and infants require adequate stimulation of both fear and love pathways to grow into an emotionally robust child, because the brain is pre-wired for both but requires further stimulation for adequate development.

The Mind-Brain Link

If the mind controls the brain and not the other way around as Dr Leaf suggests, why do anti-depressant medications correct depression or anxiety disorders?  There is high-level evidence to show this to be true [26-28].  The same can be said for recent research to show that medications which enhance NDMA receptors have been shown to improve the extinction of fear in anxiety disorders such as panic disorder, OCD, Social Anxiety Disorder, and PTSD [29].

If the mind controls the brain and not the other way around as Dr Leaf suggests, why do some people with acquired brain injuries or brain tumours develop acute personality changes or thought disorders?  Dr Leaf has done PhD research on patients with closed head injuries and treated them in clinical settings according to her CV.  She must be familiar with this effect.

One can only conclude that there is a bi-directional effect between the brain and the stream of thought, which is at odds with Dr Leaf’s statement that the mind controls the brain and not the other way around.

FURTHER CLARIFICATION

One further thing.  Can you clarify which of Dr Leaf’s peer-reviewed articles have definitively shown the academic improvement in the cohort of 100,000 students, as you and your referee have stated?  And can you provide a list of articles which have cited Dr Leaf’s Geodesic Information Processing Model?  Google Scholar did not display any articles that had cited it, which must be an error on Google’s part.  If her theory is widely used as you say, it must have been extensively cited.

I understand that you are both busy, but I believe that I have documented a number of observations, backed by recent peer-reviewed scientific literature, which directly contradict Dr Leaf’s teaching.  I have not had a chance to touch on many, many other points of disagreement.

For the benefit of Dr Leaf’s followers, and for the scientific and Christian community at large, I would appreciate your response.

I would be grateful if you could respond to the points raised and the literature which supports it, rather than an Ad Hominem dismissal or further defense by association.

Dr C. Edward Pitt

REFERENCES

1. Fowler, G., Evidence-based practice: Tools and techniques. Systems, settings, people: Workforce development challenges for the alcohol and other drugs field, 2001: 93-107.

2. Mara, D., et al., Sanitation and health. PLoS Med, 2010. 7(11): e1000363.

3. Bartram, J. and Cairncross, S., Hygiene, sanitation, and water: forgotten foundations of health. PLoS Med, 2010. 7(11): e1000367.

4. Hunter, P.R., et al., Water supply and health. PLoS Med, 2010. 7(11): e1000361.

5. FMRC. Public BEACH data. 2010  16JUL13]; Available from: <http://sydney.edu.au/medicine/fmrc/beach/data-reports/public&gt;.

6. Siegel, R., et al., Cancer statistics, 2013. CA Cancer J Clin, 2013. 63(1): 11-30.

7. Cussenot, O. and Valeri, A., Heterogeneity in genetic susceptibility to prostate cancer. Eur J Intern Med, 2001. 12(1): 11-6.

8. Alberti, C., Hereditary/familial versus sporadic prostate cancer: few indisputable genetic differences and many similar clinicopathological features. Eur Rev Med Pharmacol Sci, 2010. 14(1): 31-41.

9. Nickels, S., et al., Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors. PLoS Genet, 2013. 9(3): e1003284.

10. Berrettini, W.H. and Doyle, G.A., The CHRNA5-A3-B4 gene cluster in nicotine addiction. Mol Psychiatry, 2012. 17(9): 856-66.

11. Hutter, C.M., et al., Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer Res, 2012. 72(8): 2036-44.

12. Yusuf, S., et al., Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet, 2004. 364(9438): 937-52.

13. Asselbergs, F.W., et al., Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. Am J Hum Genet, 2012. 91(5): 823-38.

14. Wu, Y.L., et al., Risk factors and primary prevention trials for type 1 diabetes. Int J Biol Sci, 2013. 9(7): 666-79.

15. Ali, O., Genetics of type 2 diabetes. World J Diabetes, 2013. 4(4): 114-23.

16. Murea, M., et al., Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud, 2012. 9(1): 6-22.

17. Kunes, J. and Zicha, J., The interaction of genetic and environmental factors in the etiology of hypertension. Physiol Res, 2009. 58 Suppl 2: S33-41.

18. Wiedemann, K., et al., Anxiolyticlike effects of atrial natriuretic peptide on cholecystokinin tetrapeptide-induced panic attacks: preliminary findings. Arch Gen Psychiatry, 2001. 58(4): 371-7.

19. Ronco, C., Fluid overload : diagnosis and management. Contributions to nephrology,. 2010, Basel Switzerland ; New York: Karger. viii, 243 p.

20. Riegel, B., et al., State of the science: promoting self-care in persons with heart failure: a scientific statement from the American Heart Association. Circulation, 2009. 120(12): 1141-63.

21. Arnold, C. Gut feelings: the future of psychiatry may be inside your stomach. 2013  [cited 2013 Aug 22]; Available from: http://www.theverge.com/2013/8/21/4595712/gut-feelings-the-future-of-psychiatry-may-be-inside-your-stomach.

22. Hobson, J.A., REM sleep and dreaming: towards a theory of protoconsciousness. Nat Rev Neurosci, 2009. 10(11): 803-13.

23. Dalgleish, T., The emotional brain. Nat Rev Neurosci, 2004. 5(7): 583-9.

24. Landers, M.S. and Sullivan, R.M., The development and neurobiology of infant attachment and fear. Dev Neurosci, 2012. 34(2-3): 101-14.

25. Bos, K., et al., Psychiatric outcomes in young children with a history of institutionalization. Harv Rev Psychiatry, 2011. 19(1): 15-24.

26. Arroll, B., et al., Antidepressants versus placebo for depression in primary care. Cochrane Database Syst Rev, 2009(3): CD007954.

27. Soomro, G.M., et al., Selective serotonin re-uptake inhibitors (SSRIs) versus placebo for obsessive compulsive disorder (OCD). Cochrane Database Syst Rev, 2008(1): CD001765.

28. Kapczinski, F., et al., Antidepressants for generalized anxiety disorder. Cochrane Database Syst Rev, 2003(2): CD003592.

29. Davis, M., NMDA receptors and fear extinction: implications for cognitive behavioral therapy. Dialogues Clin Neurosci, 2011. 13(4): 463-74.