Olive Leaf Extract – A potential treatment, but not for what you think

Here in Australia, it’s winter. It’s currently warmer in the fridge than it is outside. We’ve just been blasted by a wall of frigid air straight from Antarctica, and much of the south-eastern corner of our continent has snow drifts over parts that not so long ago were baking under the hot Autumn sun. It’s not something we’re used to in Australia.

Of course, now that winter is firmly entrenched, more people are coming to see me with their viral upper respiratory tract infections, better known as ‘colds’. Yes, ’tis the season to be sneezin’!  Over my years of practice, I’ve seen enough people with a cold to last me a thousand winters.

What always fascinates me are the things that people try to use to cure their cold. I think I’ve heard everything over the last decade: garlic, ginger, peppermint, chicken soup, honey, tea, honey mixed with lemon mixed with tea, or honey mixed with lemon mixed cayenne pepper mixed with tea.   Some people rub Vicks on their feet. Other people douse their pillows in eucalyptus oil.

Another common recommendation that gets around the grape vine and social media is olive leaf extract, used in traditional ‘medicine’ for thousands of years, and those witch-doctors and shamans can’t all be wrong.

One published review described the ‘science’ of olive leaf extract: “Constituents of the olive tree, Olea europaea, have been studied and utilized in folk medicine for centuries. Olive leaf extract, derived from the leaves of the olive tree, contains phenolic compounds, specifically oleuropein, that have demonstrated potent antimicrobial, antioxidant, and anti-inflammatory activity. Oleuropein and derivatives such as elenolic acid have been shown to be effective in in vitro and animal studies against numerous microorganisms, including retroviruses, coxsackie viruses, influenza, and parainfluenza as well as some bacteria. Research suggests that olive leaf constituents interact with the protein of virus particles and reduce the infectivity and inhibit replication of viruses known to cause colds, influenza, and lower respiratory infection. Olive leaf extract has also been shown to stimulate phagocytosis, thereby enhancing the immune response to viral infection. Anecdotal reports indicate olive leaf extract taken at the onset of cold or flu symptoms prevents or shortens the duration of the disease. For viral sore throats, gargling with olive leaf tea may alleviate symptoms, possibly by decreasing inflammation and viral infectivity.” [1]

It’s always a concern when a supposedly peer reviewed journal allows an article to get through which seriously discusses anecdotal evidence as something worthy of attention. Anecdotal evidence is the weakest level of evidence possible. Anecdotal evidence is essentially just stories and opinion [2]. There’s anecdotal evidence for the Tooth Fairy. The other ‘evidence’ that this review describes is from in vitro studies, which are trials in test tubes not in people. In vitro evidence is only helpful in a general sense. Just because a reaction happens in a test tube or petri dish doesn’t mean that it will happen in a real life human being.

So then, do the claims for olive leaf extract stand up to the rigors of modern scientific enquiry or is it like every other cold and flu ‘remedy’ – just another individualised mythology?

Being sceptical, I wanted to find out. So I searched through the published medical literature for quality clinical trials that studied olive leaf extract in humans, and I found only six trials. Interestingly, all of the trials studying olive leaf extract weren’t looking at its effect on immune function but on cholesterol and blood sugar control, blood pressure, and oxidative stress.

In 2009, Kendall et al published a single-centre, randomized, single-blinded, prospective pilot comparison of the effect of dietary supplementation with olive leaf extract on the markers of oxidative stress in 45 healthy young adult volunteers. They found that olive leaf extract had no effect on oxidative stress compared to the control group [3].

Susalit et al (2011) published a double-blind, randomized, parallel and active-controlled clinical study looking at the tolerability, cholesterol-lowering and anti-hypertensive effect of Olive leaf extract in comparison with Captopril (a common blood pressure medication) in patients with early hypertension. After 8 weeks of treatment, there were similar reductions in blood pressure in both the olive leaf extract and the blood pressure pill groups. There was a significant drop in triglyceride levels in the olive leaf extract group, but not in Captopril group [4].

Wainstein et al (2012) performed a randomized controlled trial on 79 adults with non-insulin dependent diabetes, comparing a single 500mg dose of olive leaf extract with placebo over 14 weeks. They measured the HbA1c (a surrogate measurement of the average blood sugar over a three month period) and plasma insulin levels. They also did studies in rats to study the mechanism of action of the olive leaf extract. In the human trials, the subjects treated with olive leaf extract exhibited significantly lower HbA1c and fasting plasma insulin levels. This effect was thought to be reflected in the rat study which suggested that olive leaf extract reduced the digestion and absorption of starch from the intestines [5].

de Bock et al (2013) did a randomized, double-blinded, placebo-controlled, crossover trial on 46 patients in New Zealand, over a 30 week period. The participants were middle aged and overweight. The researchers were primarily studying insulin sensitivity but they also looked at glucose and insulin profiles, cytokines, lipid profile, body composition, 24-hour ambulatory blood pressure, and carotid intima-media thickness. The olive leaf extract group had a statistically significant improvement in insulin sensitivity and responsiveness of the pancreatic β-cell. Interestingly, the olive leaf extract supplementation improved some inflammatory markers, but not others, and made no difference to the patients lipid profile, blood pressure, body composition (their body fatness), carotid intima-media thickness (a risk predictor of cardiovascular disease), or liver function [6].

For completeness, de Bock lead another trial, also published in 2013, although this trial was more a study of the absorption of the compounds in olive leaf extract than a study of their effects [7]. There was a 1996 Belgian study which was written in French. I’m not very good with French, but according to the English abstract, there was no difference between the olive leaf extract and placebo in terms of blood pressure and blood sugar levels [8].

Reconciling the research on olive leaf extract makes for an interesting narrative. There are a couple of really strong, methodologically robust trials on olive leaf extract, and with positive results in favour of it. However, I can count them on one hand, and while the results are encouraging for proponents of olive leaf extract, there needs to be a lot more research before those claims can be made with certainty. And in contrast to its usual selling points, those positive effects for olive leaf extract were for blood sugar control, not the prevention or treatment of viral illnesses.

The bottom line – olive leaf extract may one day prove to be a useful herbal supplement, but there’s not enough clinical evidence to support it at the present moment. And there’s certainly no evidence that olive leaf extract will do anything for your viral upper respiratory tract infections.

So next time you get a cold, don’t bother spending money on olive leaf extract. Have a couple of paracetamol, a long hot shower and a good rest.

And if symptoms persist, don’t forget to see your GP.

References

[1]        Roxas M, Jurenka J. Colds and influenza: a review of diagnosis and conventional, botanical, and nutritional considerations. Alternative medicine review : a journal of clinical therapeutic 2007 Mar;12(1):25-48.
[2]        Fowler G. Evidence-based practice: Tools and techniques. Systems, settings, people: Workforce development challenges for the alcohol and other drugs field 2001:93-107.
[3]        Kendall M, Batterham M, Obied H, Prenzler PD, Ryan D, Robards K. Zero effect of multiple dosage of olive leaf supplements on urinary biomarkers of oxidative stress in healthy humans. Nutrition 2009 Mar;25(3):270-80.
[4]        Susalit E, Agus N, Effendi I, et al. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with Captopril. Phytomedicine : international journal of phytotherapy and phytopharmacology 2011 Feb 15;18(4):251-8.
[5]        Wainstein J, Ganz T, Boaz M, et al. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. Journal of medicinal food 2012 Jul;15(7):605-10.
[6]        de Bock M, Derraik JG, Brennan CM, et al. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PloS one 2013;8(3):e57622.
[7]        de Bock M, Thorstensen EB, Derraik JG, Henderson HV, Hofman PL, Cutfield WS. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Molecular nutrition & food research 2013 Nov;57(11):2079-85.
[8]        Cherif S, Rahal N, Haouala M, et al. [A clinical trial of a titrated Olea extract in the treatment of essential arterial hypertension]. Journal de pharmacie de Belgique 1996 Mar-Apr;51(2):69-71.

Dr Caroline Leaf and the organic foods fallacy

Screen Shot 2014-11-28 at 1.13.59 am

Organic foods. They are amazingly popular. More than a million Australians buy organic foods regularly, and several million more buy it occasionally. The retail value of the organic market is estimated to be more than $1 billion annually. The assumption made by most people is that because it’s so popular, organic foods must be good for you, or at least have something going for them to make them worth all the hype.

Of course, just because something’s immensely popular and has a billion-dollar turnover doesn’t necessarily mean it’s beneficial (One Direction is a case-in-point).

In fact, despite organic foods being touted by their supporters as healthier, safer, and better for the environment than normal foods, actual scientific evidence fails to show any significant difference. I wrote about this earlier in the year (see: Borderline Narcissism and Organic Food). Since then, another large prospective trial deflated organic food’s bubble, with a British study showing no change in the incidence of cancer in women who always ate organic foods versus those who never ate organic foods [1].

The dearth of benefit from organic foods wouldn’t be so bad if they were just another guy in the line-up, something neutral and inert. Unfortunately, not only can organic produce be contaminated if farmed incorrectly [2, 3], but they come at an extraordinary premium, sometimes costing four times more than their conventional counterparts (Borderline Narcissism and Organic Food).

Dr Caroline Leaf is a communication pathologist and a self-titled cognitive neuroscientist. A couple of months ago, she let slip her intention to publish a book in 2015 about food. Who knows what she’ll actually say, but if today’s social media meme is anything to go by, it will likely follow the same pattern of her other teachings.

Today, she wrote, “Research shows that dark organic CHOCOLATE lowers blood pressure, improves circulation, increase HDL (“good”) cholesterol, reduce the risk of heart attack and stroke, and increases insulin … and … recent research has even suggest it may prevent weight gain!”

As I discussed recently, Dr Leaf does herself a disservice by not citing her sources. It’s very brave to write in a public forum that dark chocolate reduces the heart attack and stroke, since this could be interpreted as medical advice, which she is not qualified to give. As for the actual effects of dark chocolate, there is not a lot of quality evidence on dark chocolate on its own. A 2011 meta-analysis of general chocolate consumption on cardiovascular risk did indeed show a relative risk reduction of 37% [4]. But before you prescribe yourself two dark chocolate Lindt balls twice a day, consider that a relative risk reduction of 37% isn’t a big effect. Plus, the recommended 50 grams of 85% organic dark chocolate to attain the small benefit for your cardiovascular health contains just over 300 calories/1280 kJ (the average can of Coke contains 146 calories/ 600 kJ), and is 30% saturated fat (http://caloriecount.about.com/calories-green-blacks-organic-dark-chocolate-i110689). So any health benefit that may be associated with the poly-phenol content is likely nullified by the high saturated fat and calorie count.

What concerns me about Dr Leaf’s future foray into dietetics is that little word sitting quietly in her opening sentence: “organic”. Dr Leaf is an organic convert. But rather than act like a scientist that she claims to be, she preaches from her biases, ignoring the evidence that organic food is all hype and no substance, encouraging Christians everywhere to pay excessive amounts of money for something that’s of absolutely no benefit. Dr Leaf is welcome to eat whatever she chooses, but encouraging organic eating without clear benefit is more hindrance than help for most of her followers.

References

  1. Bradbury, K.E., et al., Organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. Br J Cancer, 2014. 110(9): 2321-6 doi: 10.1038/bjc.2014.148
  2. Mukherjee, A., et al., Association of farm management practices with risk of Escherichia coli contamination in pre-harvest produce grown in Minnesota and Wisconsin. Int J Food Microbiol, 2007. 120(3): 296-302 doi: 10.1016/j.ijfoodmicro.2007.09.007
  3. Sample, I., E coli outbreak: German organic farm officially identified. The Guardian, London, UK, 11 June 2011 http://www.theguardian.com/world/2011/jun/10/e-coli-bean-sprouts-blamed
  4. Buitrago-Lopez, A., et al., Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. BMJ, 2011. 343: d4488 doi: 10.1136/bmj.d4488