Going green – why envy is an adaptive process

The Bible says, in Job 5:2, “For wrath kills a foolish man, And envy slays a simple one.”

A German proverb goes, “Envy eats nothing, but its own heart.”

Dr Caroline Leaf, communication pathologist and self-titled cognitive neuroscientist, posted today on her social media feeds, “Jealousy and envy creates damage in the brain … but … celebrating others protects the brain!”

Yes, sometimes envy isn’t good for us. Emotions guide our thought process, and like all emotions that are out of balance, too much envy can cloud our better rational judgement and bias our perception of the world. Thankfully, envy doesn’t literally eat out our hearts or literally cause brain damage.

If anything, envy when experienced in a balanced way can actually improve our brain functioning. According to real cognitive neuroscientists, envy and regret are emotions that help us because they both fulfil the role of effectively evaluating our past actions, which improves our choices in the future. As Coricelli and Rustichini noted, “envy and regret, as well as their positive counterparts, share the common nature that is hypothesized in the functional role explanation: they are affective responses to the counterfactual evaluation of what we could have gotten had we made a different choice. Envy has, like regret, a functional explanation in adaptive learning.” [1]

When it comes to the human psyche, there is no black or white, good vs evil distinction between different feelings or emotions. B-grade life coaches and slick pseudoscience salespeople dumb down our emotions into a false dichotomy because it helps sell their message (and their books). Every emotion can be either helpful or unhelpful depending on their context in each individual.

As Skinner and Zimmer-Gembeck wrote, “Emotion is integral to all phases of the coping process, from vigilance, detection, and appraisals of threat to action readiness and coordinating responses during stressful encounters. However, adaptive coping does not rely exclusively on positive emotions nor on constant dampening of emotional reactions. In fact, emotions like anger have important adaptive functions, such as readying a person to sweep away an obstacle, as well communicating these intentions to others. Adaptive coping profits from flexible access to a range of genuine emotions as well as the ongoing cooperation of emotions with other components of the action system.” [2]

If you find your thoughts and feelings tinged by the greenish hue of envy, don’t worry, it’s not necessarily a bad thing. Your heart isn’t going to consume itself and you won’t sustain any brain damage. Use envy or regret as tools of learning, tools to help you evaluate your choices so that you make a better choice next time. Having balanced emotions is the key to learning and growing, coping with whatever obstacles life throws at us.

References

  1. Coricelli, G. and Rustichini, A., Counterfactual thinking and emotions: regret and envy learning. Philos Trans R Soc Lond B Biol Sci, 2010. 365(1538): 241-7 doi: 10.1098/rstb.2009.0159
  2. Skinner, E.A. and Zimmer-Gembeck, M.J., The development of coping. Annu Rev Psychol, 2007. 58: 119-44 doi: 10.1146/annurev.psych.58.110405.085705

Don’t stress about stress – Part 3: Coping

In our last two blogs, we’ve been looking at stress, and why stress is usually more helpful than harmful.

It’s not that stress can never be harmful. Stress can be a trigger to some illnesses (although not as many as the popular media often portrays). What is it that makes the difference between helpful and harmful? What is it that causes one person to surf the tsunami of sewerage that often confronts us in life, while another person sinks?

The answer lies in resilience.

WHAT IS RESILIENCE?

Resilience is the term given to the individual’s capacity to cope.

Researchers in the field of psychiatry often use the term resilience, which “is the capacity and dynamic process of adaptively overcoming stress and adversity while maintaining normal psychological and physical functioning” [1] although psychologists and social science researchers would use the term “coping”, which is defined by Compas et al as, “conscious and volitional efforts to regulate emotion, cognition, behavior, physiology, and the environment in response to stressful events or circumstances.” [2] Skinner and Zimmer-Gembeck define coping as, “action regulation under stress.” [3]

Considering the definitions used, the terms are essentially interchangeable. The other observation to be made here is that coping/resilience is an active process. It’s not something that happens despite of us – we actively cope with stress. In the face of a situation involving emotional arousal (danger or stress), we take steps to deal with our inner and outer environments (the physiological processes of our body, as well as the environment around us). Sometimes these steps are conscious and/or under our control. But theorists also consider automatic, unconscious, and involuntary responses to also be part of the coping spectrum [4].

WHAT CONTRIBUTES TO RESILIENCE?

Coping Strategies

What makes up those actions? What influences the action steps?

Psychologists have described hundreds of individual methods of coping through recent research, although there have been efforts to consolidate the plethora of individual coping strategies into “family” clusters, based on function. For example, a primary tier is to “Coordinate actions and contingencies in the environment” which involves “finding additional contingencies” which on the third level involves “reading, observation, and asking others.” [3] Table 1 in the paper by Skinner and Zimmer-Gembeck [3] summarize the many ways of coping and how they can be grouped together into families, and their corresponding adaptive process.

Personality factors

Coping strategies follow along the lines of personality type [5], as well as the stage of development in children [3]. Personality types such as Neuroticism and Openness have been well studied, with Neuroticism associated with maladaptive coping strategies, and Openness correlated with adaptive coping (in marital relationships [6] and in public speaking tasks [5]).

Further research has shown how personality significantly influences coping, with the severity of the stress, and the age and culture of a person influencing the strategy and strength of the coping response [4]. Of course, personality traits like neuroticism sound bad, but they confer their own strengths. For example, negative affect has protective benefits by enhancing the detection of deception [7].

Biological factors

The shared connection that personality types and coping responses have is in their shared genetics, with personality and coping styles influenced by common genes [8]. This makes perfect sense as it has been shown that changes in individual genes effect the ability of the brain to associate the correct value to rewards [9], which then influences both mood [10], and learning [11]. Even though environmental variables are important in determining personality and learning aspects of coping with stress, the brains underlying capacity to process the incoming signals correctly will significantly influence the direction and outcome of the learning process, which includes learning which coping strategies work best for each individual.

On a deeper level, there are several biological processes that make up the features of resilience. Animal studies on resilience, as a whole, have shown that resilience “is mediated not only by the absence of key molecular abnormalities that occur in susceptible animals to impair their coping ability, but also by the presence of distinct molecular adaptations that occur specifically in resilient individuals to help promote normal behavioral function.” [12] That is, resilient individuals have the full complement of critical components in the resilience pathway, and have some extra tools too.

Human studies thus far have shown strong links to genetic changes that affect the proteins in the stress system. Epigenetic mechanisms are involved, and the role of the environment is also significant, especially uncontrollable early childhood trauma. Wu et al list the current studies of genetic changes that effect resilience in humans [1: Table 1]. The proteins involved are responsible for the growth of new nerve pathways (BDNF), and for their function, especially within the stress system (CRHR1, FKBP5) and in control of mood and reward systems (COMT, DAT1, DRD2/4, 5-HTTLPR, the HTR group).

Wu et al [1] also summarised the currently known facts about epigenetic factors in resilience. Interestingly, they noted an animal study in which chronic stressors increased an epigenetic marker called histone acetylation in the hippocampus in mice, which enhanced the protective effects of the stress (epigenetics will be the subject of a future blog)

Resilience on a personal level

So coping and resilience are known protective factors for stress, and are more commonly deployed than most people realize. Despite all of the publicity that stress has generated, human beings remain remarkably unscathed. It’s estimated that, “in the general population, between 50 and 60% experience a severe trauma, yet the prevalence of illness is estimated to be only 7.8%.” [12] (Note: By ‘illness’, the authors were referring to Post Traumatic Stress Disorder, not all of human sickness).

But when it comes to recommending different coping strategies on an individual level, it is a much harder thing to do. What is adaptive in some situations and for some people is maladaptive in other situations and for other people.

For example, in animal studies, “stressed females tend to perform better than males on non-aversive cognitive or memory tasks … Conversely, in tests of acute stress or aversive conditioning, stress enhances learning in males and impairs it in females … the literature suggests that in cognitive domains females cope better with chronic forms of stress, whereas males tend to cope better with acute stress.” [12] So animal studies confirm a difference in the biological stress response between men and women. If these studies in animals can be extended to humans, it may explain the tendency for men to engage in “fight-or-fight” responses to stress where women usually move to “tend-and-befriend” mode [13].

Human studies on coping also demonstrate that what is good for one is not necessarily good for another. Connor-Smith and Flachsbart confirm that, “In particular, daily report and laboratory studies suggest that individuals high in sensitivity to threat may either benefit from disengagement or be harmed by engagement in the short term, with the opposite pattern appearing for individuals low in threat sensitivity.” [4]

So in other words, just because engaging may be a positive method of coping does not mean that it should be recommended to everyone. Some people will have more harm from trying to engage. Care should be taken when giving people advice about how to manage their stress. Ill-informed instructions can actually make things worse.

SUMMARY

It’s well established that stress can have negative impacts on your physical and mental health. But contrary to the popular view, stress is not always bad. As a number of authors point out, most people go through significant stress at some point in their lives, but only a fraction succumb to that stress.

The difference is the factors that make up resilience. Where we are along the stress spectrum (that is, whether you are wired to be more stressed, or more resistant to stress) depends on our genetic predisposition, which determines the physiology of our stress system and our personality, and the ways we learn to cope.

How we cope best depends on our individual traits and the situation. There is no one-size-fits-all. Pushing a person into a form of coping that’s not suitable can actually cause a lot of harm.

Remember, we normally find what coping strategies work for us automatically as our resilience is mostly innate, and we all go through severe stress at some point or another in our lives, but only a small fraction of us will succumb to that stress.

In the last blog in the series, we’ll have a brief look at what happens when stress overwhelms us … when stress is breaking bad.

References

  1. Wu, G., et al., Understanding resilience. Front Behav Neurosci, 2013. 7: 10 doi: 10.3389/fnbeh.2013.00010
  2. Compas, B.E., et al., Coping with stress during childhood and adolescence: problems, progress, and potential in theory and research. Psychol Bull, 2001. 127(1): 87-127 http://www.ncbi.nlm.nih.gov/pubmed/11271757
  3. Skinner, E.A. and Zimmer-Gembeck, M.J., The development of coping. Annu Rev Psychol, 2007. 58: 119-44 doi: 10.1146/annurev.psych.58.110405.085705
  4. Connor-Smith, J.K. and Flachsbart, C., Relations between personality and coping: a meta-analysis. Journal of personality and social psychology, 2007. 93(6): 1080
  5. Penley, J.A. and Tomaka, J., Associations among the Big Five, emotional responses, and coping with acute stress. Personality and individual differences, 2002. 32(7): 1215-28
  6. Bouchard, G., Cognitive appraisals, neuroticism, and openness as correlates of coping strategies: An integrative model of adptation to marital difficulties. Canadian Journal of Behavioural Science/Revue canadienne des sciences du comportement, 2003. 35(1): 1
  7. Forgas, J.P. and East, R., On being happy and gullible: Mood effects on skepticism and the detection of deception. Journal of Experimental Social Psychology, 2008. 44: 1362-7 http://bit.ly/Jm66a7
  8. Kato, K. and Pedersen, N.L., Personality and coping: A study of twins reared apart and twins reared together. Behavior Genetics, 2005. 35(2): 147-58 http://link.springer.com/article/10.1007%2Fs10519-004-1015-8
  9. Dreher, J.-C., et al., Variation in dopamine genes influences responsivity of the human reward system. Proceedings of the National Academy of Sciences, 2009. 106(2): 617-22
  10. Felten, A., et al., Genetically determined dopamine availability predicts disposition for depression. Brain Behav, 2011. 1(2): 109-18 doi: 10.1002/brb3.20
  11. Ullsperger, M., Genetic association studies of performance monitoring and learning from feedback: the role of dopamine and serotonin. Neuroscience & Biobehavioral Reviews, 2010. 34(5): 649-59
  12. Russo, S.J., et al., Neurobiology of resilience. Nature neuroscience, 2012. 15(11): 1475-84
  13. Verma, R., et al., Gender differences in stress response: Role of developmental and biological determinants. Ind Psychiatry J, 2011. 20(1): 4-10 doi: 10.4103/0972-6748.98407

Don’t stress about stress, part 2

ThatWhichDoesNotKillUs

In the last blog post, we looked at some of the different ways of looking at stress outside of the medical field – the stress on a guitar string, the power band of the car engine, and the action of gravity on our bodies. In this post, I want to expand on those metaphors, using them to help us understand how we can respond to stress, and why stress isn’t our enemy, but it actually brings out our best if managed in the right way.

One of the reasons why gravity gives you strong muscles and bones, and zero gravity gives you weak muscles and bones, is because of resistance.

Movement involves work. We do “work” everyday in simple everyday activities, because our muscles and bones have to apply a certain amount of force in order to overcome gravity. Our muscles adapt by growing the muscle fibres to provide that force, and bones remodel themselves to provide the maximum resistance to the loads that gravity and the muscles put through them. We’re not aware of this day-to-day because we never experience prolonged changes in our gravitational fields.

But when we need to do more work than our muscles are accustomed to, our muscle fibres increase in strength, first as the nerve networks that supply the muscles become more efficient, after about two weeks of ongoing training, the fibres themselves increase in size [1, 2]. The growth in muscle fibres is caused by three related factors: mechanical tension, muscle damage and metabolic stress [2]. Mechanical tension involves “force generation and stretch”. In other words, the muscle fibres are stretched just beyond their usual capacity, and they actively fight against the resistance. This damages the weaker muscle fibres, which are repaired. The remaining muscle fibres are forced to adapt by growing larger because of the stimulation of growth factors [2].

One of my favorite “Demotivator” posters says, “That which does not kill me postpones the inevitable” [3]. Of course, the phrase that they’ve parodied is, “That which does not kill us makes us stronger.” Why is there truth to that idiom? Adversity occurs when life circumstances come against us. In other words, adversity resists us. In the arm wrestle between adversity and overcoming, work is involved. We have to fight back.

In a similar way, we grow when adversity pushes us just beyond what we have done before, stretching us. We may sustain some damage in the process, but that helps to reduce our weaknesses, and forces us into growth as we heal. When we push back against adversity, the “cells” of our character grow.

Of course, we all know examples where muscles fail under intense or prolonged loads. I vividly remember the pictures of the UK’s Paula Radcliffe, succumbing to the grueling hills and scorching Athens heat with only four miles left in the 2004 Olympic Marathon. Muscle failure from excessive stretch or excessive endurance parallels the allostatic load response, which is what people commonly referred to as ‘stress’.

Scientific evidence that stress is positive

There have been recent studies in animals that demonstrate that stress is physically as well as mentally enhancing.

Neurogenesis is the process of new nerve cell formation. Studies of rodents placed under intermittent predictable stressors showed an increase in neurogenesis within the hippocampus, which is the part of the brain related to learning and memory. Along with this enhancement of neurogenesis, the function of the hippocampus increased, specifically hippocampal-dependent memory, with a reduction in depression and anxiety-like behaviours.

As Petrik et al noted in their review, “Contrary to stress always being ‘bad’, it has long been appreciated that stress has an important biological role, and recent research supports that some amount of stress at the right time is actually useful for learning and memory.” [4]

Lessons from stress

So what can we learn from stress? How do we use the stress that we are exposed to every day to make us grow strong and durable?

Firstly, like the guitar string, we need to learn when we are in tune, at the peak of our productivity. Or like the car engine, what it feels like to be in the power band. When we know where our sweet spot is, we can operate within it, achieving our best in life without doing ourselves harm. This is the first point that we need to identify on our own personal stress/productivity curve. This is the point of maximum productivity.

The other life principle to be gained from the car engine analogy is that not all of us are high performance engines. I would love to think that I’m a F1 racing engine – highly tuned, supreme power – but I recognise my limitations. I would even settle for a 5-litre V8, but I know that I’m probably more like a well-tuned V6. We are what we are. Sometimes we apply the most stress to ourselves when we try to drive in the power band of someone else’s engine. We need to accept who we are.

It seems logical that if too much stress is bad for us, then having little or no stress is good for us. But like the new guitar string, minimal stress makes us unproductive. Like zero gravity on the body, little or no stress makes us weak.

And we need to understand that a bit more stress is ok. It’s inevitable that we are going to be stressed beyond what we usually cope with at times. But without that challenge, there would be no growth. Challenges usually hurt. You can’t have growth without pain. In the muscle analogy, at the stretch at which peak growth occurs, muscle fibres tear and the lactic acid build up in the remaining cells can be very uncomfortable. The key is learning how far we can push ourselves before we start to falter and fail. This is the second point we need to discover on our personal stress/productivity curve. This is the point of maximum growth.

Once we understand our own individual points of maximum productivity and growth, we can use them as guides to our personal growth and achievement. Actually, I should specify that these are our starting points, since as we face challenges and experience growth, the points will change slightly. We can remap those points and continue in our pattern of growth and development.

Pushing ourselves into just enough stress to achieve growth, then pulling back to rest and restore, is a pattern of growth that is seen in many facets of the natural world and the human body. Body builders and athletes use this method all the time in their training. They push themselves with more repetitions and heavier weights, or longer or faster runs, then they pull back to consolidate their gains. During our adolescence, our bodies naturally go through growth spurts – periods of rapid growth followed by a plateau, before the next burst of growth hormone hits us again. Even tree rings demonstrate that growth and consolidation occur all the way through the natural world.

This is the Stressed-Rest cycle. The studies in animals on neurogenesis strengthen the theory, because it was the animals that experienced bursts of stress that showed enhanced neurogenesis, memory and reduced depression/anxiety behaviours.

If you want maximum personal growth, constant stress does not help. There has to be times of rest. Some people think that rest time is wasted time, reducing productivity. But as explained, without rest time, productivity rapidly falls away. Without rest, stress goes bad, leading to allostatic overload.

So in summary, excessive stress is bad. But if all stress were bad, then we would all crumple any time that something became difficult. So stress is not a force for evil. Stress is part of our normal everyday lives, and is vital if we are to see ongoing personal growth.

We know from living life that we all don’t fall in a heap when things go wrong. We have in-built ways of coping that help us to absorb troubles and adversities and like emotional photosynthesis – turn them into fuel for growth.

This is the science of resilience, the counterbalance to the forces of stress that help us cope and adapt in a rapidly changing natural and social environment, the Yang to allostatic overload’s Yin. A discussion on the science of stress is not complete without a discussion of resilience, which I’ll discuss in the next blog in this series.

References

  1. Hortobagyi, T. and Maffiuletti, N.A., Neural adaptations to electrical stimulation strength training. Eur J Appl Physiol, 2011. 111(10): 2439-49 doi: 10.1007/s00421-011-2012-2
  2. Schoenfeld, B.J., The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res, 2010. 24(10): 2857-72 doi: 10.1519/JSC.0b013e3181e840f3
  3. Adversity. Demotivators [cited July 2013]; Available from: http://www.despair.com/adversity.html.
  4. Petrik, D., et al., The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building? Neuropharmacology, 2012. 62(1): 21-34 doi: 10.1016/j.neuropharm.2011.09.003

Dr Caroline Leaf and the case of the killer reactions

Screen Shot 2014-09-13 at 10.14.58 pm

Stress! Believe the media and seemingly every disease known to man is in some way linked to it. Heart disease = stress. Cancer = stress. Flatulence = stress.

Dr Caroline Leaf, Communication Pathologist and self-titled cognitive neuroscientist, has been of a similar opinion for the last couple of decades. Dr Leaf must have been kind enough to read my book, because after teaching for the last fifteen years that stress is toxic, a subtle shifting under the weight of evidence has appeared.

In her 2009 book [1], Dr Leaf wrote,
“The result of toxic thinking translates into stress in your body.” (p15)
“Stress is a global term for the extreme strain on your body’s systems as a result of toxic thinking.” (p15)
“Stress is a direct result of toxic thinking.” (p29)
“These stages of stress are scientifically significant because they illustrate how a single toxic thought causes extreme reactions in so many of our systems.” (p39)

In 2013, her position on stress hadn’t really changed that much: “Even a little bit of these negative levels of stress from a little bit of toxic thinking has far-reaching consequences for mental and physical health”, and “The association between stress and disease is a colossal 85 percent.” [2: p36-37]

Again in her 2009 book [1], Dr Leaf devotes an entire chapter to the alleged effects of the toxic stress pathway on our body (chapter 4, p39-43).

Now in her latest social media update, tucked in amongst the gratuitous selfies and holiday snaps, comes something that’s actually about mental health: “Stress does not kill… is good for us! Its our negative reactions to stressful events that pushes into negative stress…and this is what kills! Sistas 2014 NZ”

The problem for Dr Leaf is that any stress, whether it’s caused by our “negative” reactions or not, doesn’t actually kill us.

There is a phrase used in science, “Correlation does not equal causation”. This simply means that just because two things occur together, one doesn’t necessarily cause the other. For example, do my red watery eyes cause my hives? They always appear together, but they don’t cause each other. The common element that causes both of them is actually the cat that I’ve just patted.

Just because stress is correlated with certain illnesses does not mean that stress causes or contributes to those illnesses. In fact, one of Dr Leafs own pivotal references, an article by Cohen and colleagues in the Journal of the American Medical Association in 2007, discussed the weakness of assuming that stress causes most diseases. As they say, “Although stressors are often associated with illness, the majority of individuals confronted with traumatic events and chronic serious problems remain disease-free.” [3]

Even if it were true that it how we react to stress contributes to the outcome of that stress, Dr Leaf’s statement about our killer reactions incorrectly presumes that both how we cope with stress, and the physical outcome of stress are the result of our choices.

Our levels of stress, and the way we cope with our stress, is mostly caused by our genetics. Some people will be naturally less stressed, and some people will be naturally better at coping with stress (see chapter 5 of my book [4] for a full discussion on the science of resilience). Just because you’re more prone to stress doesn’t mean that it’s all down to your bad choices. Assumptions like these only add to your already high levels of stress.

That’s not to say that we don’t have a way to improve our responses. For those of us at the stressed end of the spectrum, successful psychological therapies such as Acceptance and Commitment Therapy will help to improve our coping, and certainly have been shown to improve (not cure) mental illnesses like anxiety and depression, and other chronic conditions like chronic pain (see [5] for a review).

ACT and other modern psychological therapies recognise that trying to change our thoughts doesn’t make any difference to how we cope. So like I said before, it’s partly true that how we react to normal life experience will help us live full and productive lives, but it’s not about fighting or changing our thoughts. It’s about being mentally flexible enough to make room for our thoughts and fears and move forward towards meaningful action. I’m sure that the ladies at ‘Sistas 2014’ wouldn’t be hearing that from Dr Leaf.

Anyways, I’m glad that Dr Leaf is changing her tune on stress, but there’s still more room for change before she meets up with current scientific understanding.

For an in-depth review of the teachings of Dr Leaf, visit http://www.smashwords.com/books/view/466848 where you can download a free copy of “Hold That Thought: Reappraising the work of Dr Caroline Leaf.

References

  1. Leaf, C., Who Switched Off My Brain? Controlling toxic thoughts and emotions. 2nd ed. 2009, Inprov, Ltd, Southlake, TX, USA:
  2. Leaf, C.M., Switch On Your Brain : The Key to Peak Happiness, Thinking, and Health. 2013, Baker Books, Grand Rapids, Michigan:
  3. Cohen, S., et al., Psychological stress and disease. JAMA: the journal of the American Medical Association, 2007. 298(14): 1685-7
  4. Pitt, C.E., Hold That Thought: Reappraising the work of Dr Caroline Leaf, 2014 Pitt Medical Trust, Brisbane, Australia, URL http://www.smashwords.com/books/view/466848
  5. Harris, R., Embracing Your Demons: an Overview of Acceptance and Commitment Therapy. Psychotherapy In Australia, 2006. 12(6): 1-8 http://www.actmindfully.com.au/upimages/Dr_Russ_Harris_-_A_Non-technical_Overview_of_ACT.pdf