Dr Caroline Leaf – Where Angels Fear To Tread

Screen Shot 2015-05-24 at 10.23.44 pm

After a day-trip to Movie World, and then a slight distraction by Eurovision, I had a quick look at Facebook before going about my evening chores. Upon reading Dr Leaf’s latest social media meme, I was aghast!

Dr Caroline Leaf is a communication pathologist and self-titled cognitive neuroscientist. Hiding in amongst her “Scientific Philosophy” was this juicy factoid: “Researchers found that intentional thought for 30 seconds affected laser light.” This is, apparently, also proof that prayer can change physical matter.

I actually thought it was God that changed physical matter if He agreed with our prayer requests, and not our prayers themselves, because if it was simply our prayer, then we wouldn’t need God. That’s probably a blog for another time. Still, it was her last statement that caught my attention. Intentional thought can change the properties of laser! I’d never heard that before! I had to find the references.

It turns out that the paper Dr Leaf is referring to is, “Testing nonlocal observation as a source of intuitive knowledge” [1]. In this experiment, Dr Dean Radin, a paranormal researcher, took 5 “experienced meditators” and 5 normal control subjects, and asked them to mentally interfere with a laser beam pointed at a light-reading CCD sensor inside a sealed box. He averaged out the intensity of the light pattern that was read by the CCD. He believed he found a difference in the amount of light that was read by the sensor when the meditators “blocked” the laser light compared to non-meditators and control runs.

In his original paper, Radin published the following graph of his results.

Screen Shot 2015-05-24 at 10.27.48 pm

The length of the bars represent a statistical value based on the results, not the actual results of the experiments. The simplest explanation is that the further down the bar goes, the greater the degree of interference to the laser light. Radin believed the effect was caused by the meditators literally interfering with the quantum mechanics of the photons in the laser beam, “observing” them from outside of the box, thus causing their wave function to collapse and stopping them from reaching the sensor.

However, notice that the first few experiments show a large effect, but that this diminishes as the experiments go along, and towards the end, the control groups and the meditator group is actually about the same, with no interference to the laser light at all. This effect is called the Decline Effect, and is common problem amongst studies of the paranormal. It’s a result of a phenomenon called ‘regression to the mean’, or in other words, the more times you perform an experiment, the more likely the results will line up with the true average. I think in Radin’s case, it also had a lot to do with his own expectations.

Radin himself was honest enough to discuss the effect in his paper. In his own words, “Although I had employed numerous design features to avoid artifacts (sic), and only four of the 10 control sessions conducted to that point had gone in the predicted direction, I still found it difficult to believe that the experimental effect was as easily repeatable as the results were suggesting. I knew that if I had trouble believing it, I could hardly expect anyone else to accept these results. So I found that my intentions for the experiment changed – I no longer hoped to observe results solely in the predicted direction, but rather I found myself hoping that some of the remaining sessions would go against the prediction, to validate that the methodology was not biased.” [1]

So, Radin probably caused the effect by wanting to see it. He excluded data that didn’t suit his hypothesis, citing a technical issue with the equipment, and instead focussed on the data set that still seemed to fit. He also performed the analysis of the data, which he biased with his own pre-conceived notions.

The other nail in the coffin for this paper is that it was a pilot study that was done by one researcher, which no one has since tried, or succeeded in, replicating. Indeed, the methodology for this research was based on a series of experiments done by a real physicist with better equipment, Professor Stanley Jeffers, a professor of physics at York University in Toronto, Canada, who performed the experiment about 74 times and found no effect [2].

So, Dr Leaf has cited this isolated, error prone, biased and unconfirmed paper of Radin’s as proof of the ability of thought to change physical matter, and indeed, as prayer’s ability to change physical matter.

This is simply more proof that Dr Leaf is prone to rush in where angels fear to tread, and latch on to any “research” that supports her ideas, no matter how tenuous or unscientific. She did the same thing when she cited a conference poster from a paranormal conference in the early 90’s, and claimed it was definitive proof that our thoughts can change our DNA. In actual fact, the paper was so full of flaws [3: Ch 13, The “ingenuous” experiment] that the only thing it could show was how desperate Dr Leaf is to try and justify her unscientific pet theories.

This tendency for Dr Leaf to rely on such poor science, and link it to fundamental Biblical concepts, dishonours science, the truth of the Bible, and her audience.

I think Dr Leaf would be wise to review her scientific philosophy and the “research” that she uses to justify it, rather than continuing to utilise tenuous and inaccurate articles from studies of the paranormal.

References

[1]        Radin D. Testing nonlocal observation as a source of intuitive knowledge. Explore 2008 Jan-Feb;4(1):25-35.

[2]        Alcock JE, Burns J, Freeman A. Psi wars: Getting to grips with the paranormal: Imprint Academic Charlottesville, VA, 2003.

[3]        Pitt CE. Hold That Thought: Reappraising the work of Dr Caroline Leaf. 1st ed. Brisbane, Australia: Pitt Medical Trust, 2014.

The pain and gain of grief

Floral tribute to the Sydney siege victims, at Martin Place, Sydney

Floral tribute to the Sydney siege victims, at Martin Place, Sydney

In many ways, 2014 hasn’t been the best of years, unless you’re a florist.

A dear friend of mine recently went through an unimaginable personal loss, but politely requested that no one send her flowers, because the unintentional metaphor of receiving something beautiful that soon withered and died simply reminded her of what she had lost. Not that I could have given her flowers anyway – it seems like all of Australia’s bouquets have been laid in Martin Place.

The siege in the Lindt Cafe was an assault on Australia’s national psyche as much as it was an attack on a small café in the CBD of Sydney, and marks a highpoint of suffering in the midst of several tragedies back to back. Soon after the tragic events in Martin Place, news came of the murder of eight children from the one family in Cairns. Two weeks before, we were rocked by the sudden death of cricketer, Phil Hughes.

Like many, many others in the last few weeks, I’ve felt that discombobulating mix of sadness, compassion, anxiety, and numbness (and many other feelings) that accompanies loss. I was grieving.

Grief is not fun. There are a wide variety of ways in which people grieve, of course, though grief is rarely described as joyous. Rather than being the five stages of grief that used to be dutifully learned by every medical and psychology student, grief is now considered a mish-mash of nearly every different emotion that a human can experience, for different lengths of time, at different intensities, in different patterns. Like your fingerprint, your emotional pattern of adapting to loss is as individual as you are. I felt helpless at the news from my close friend, shock at the death of Phil Hughes, and anxious when thinking about the Lindt Café. Each tragedy was also accompanied by a deep sadness.

As well as being emotionally draining, the process of grieving can have physical effects as well, associated with high levels of pro-inflammatory cytokine release and the changes that are associated with that (O’Connor, Irwin & Wellisch, 2009). Pro-inflammatory cytokines are also released because of physical stress or infection, so grief would physically feel like you have the flu, which is probably why grieving makes you feel physically awful as well as mentally distraught.

As awful as these feelings are, they are important to our healing and restoration. Grief functions as a way of helping us adjust to life on the other side of our loss. Like our body has to heal and adapt to physical wounds, grief helps us heal and adapt emotionally. Grief is not a disease, but a normal process that everyone experiences at one point or another.

Some authors teach that negative feelings and emotions are toxic, or that the outcome of different stresses in our life is dependent on our personal choices. If there was ever a case-in-point of the benefit of “negative” emotions, and why the outcome of stressful events is not entirely under our control, it’s grief. Grieving is a process which, by definition, is distressing. The storms of painful emotion roll through us, triggered and controlled by our subconscious brain, with our conscious mind along for the ride. As distressing as those emotions can be, they are not ‘negative’ emotions, but the process of healing,

At times of intense sorrow, we can try and ‘help’ those who are grieving by telling them how they should feel, or what they should do, but during times of grief, being too directional is usually not helpful. The blog today is more general in nature because I don’t want to try and push one particular way of grieving over another. There is no right or wrong way to grieve.

My Physical Education teacher often used to say, “No pain, no gain.” Actually, it was more barking through his megaphone, trying to make me run faster in my cross-country race. It may seem an odd match, but the principle applies here too. If you are feeling the sadness and loss over the Lindt Café, Phil Hughes, Robin Williams, or any other personal loss you may have experienced, it’s ok to feel the distress. The pain is hard. The feelings are raw, and they are real. But you will get through them, and they will help you to experience the joy in life again.

I am coming to terms with each of these different tragedies in my own way. Lets pray that 2015 is a much better year.

If you are struggling and don’t know where to go to talk or find assistance, see your GP or psychologist, visit BeyondBlue (http://www.beyondblue.org.au), or the Australian Centre for Grief and Bereavement (http://www.grief.org.au).

If you want to donate to the funds or foundations set up in honour of the Sydney siege victims, please go to http://www.beyondblue.org.au/get-involved/make-a-donation or http://thekatrinadawsonfoundation.org.

References

O’Connor, M.-F., Irwin, M. R., & Wellisch, D. K. (2009). When grief heats up: Proinflammatory cytokines predict regional brain activation. NeuroImage, 47(3), 891–896. doi:10.1016/j.neuroimage.2009.05.049

Dr Caroline Leaf and the law of great power

Screen Shot 2014-12-05 at 12.37.55 am

Tonight as I was flicking through Facebook one last time, a post caught my eye. It read,

“The thought you are thinking right now is impacting every single one of the 75-100 trillion cells in your brain and body at quantum speeds”

Dr Leafs social media gem gave me an eerie sense of deja vu. It was only the end of October when she posted the same factoid on social media. Today’s version has been tweaked slightly, although in all fairness, I can’t describe it as an upgrade.

Dr Caroline Leaf is a communication pathologist and self-titled cognitive neuroscientist. On the 23rd of October 2014, she posted this on her social media stream, “Every thought you think impacts every one of the 75-100 trillion cells in your body at quantum speeds!”

On comparing the pair, Dr Leaf has added “brain” into the number of cells under the influence, and then massaged the opening slightly. I already had significant concern about the scientific validity of the previous meme in October. That hasn’t changed. Rather than improving the accuracy of her meme, Dr Leaf’s changes have left it missing the mark.

The fundamental fallacy that thoughts are the main controlling influence on our brain is still there. Thought is simply a conscious projection of one part of the overall function of our brain. Our brains function perfectly well without thought. Thought, on the other hand, doesn’t exist without the brain. Our brain cells influence our thoughts, not the other way around.

The myth of “quantum speeds” is still there. Our neurones interact with each other via electrochemical mechanisms. Like all other macroscopic objects, our brains follow the laws of classical physics. It’s not that quantum physics doesn’t apply to our brains, because quantum mechanics applies to all particles, but if you think you can explain macroscopic behaviour using quantum physics, then you should also try and explain Schrodingers Cat (see also chapter 13 of my book [1] for a longer discussion on quantum physics). Dr Leaf is particularly brave to make such bold statements about quantum physics when even quantum physicists find it mysterious.

What made me slightly embarrassed for Dr Leaf is the new part of her statement. In my blog on Dr Leaf’s previous attempt at this meme, I pointed out that Dr Leaf’s estimate of the number of cells in our body was more than three times that of the estimate of scientists at the Smithsonian (http://www.smithsonianmag.com/smart-news/there-are-372-trillion-cells-in-your-body-4941473/?no-ist). The fact that Dr Leaf so badly estimated, when all she needed to do was a one line Google search, suggested that she just made the number up. Failing to cite her source eroded at her credibility as a scientist.

Today, Dr Leaf still claims that there are 75-100 trillion cells in the brain and the body. The Smithsonian still hasn’t changed its estimate. Dr Leaf still hasn’t cited her source, and has ignored a world-renowned scientific institution. Perhaps Dr Leaf believes she knows more than the scientists at the Smithsonian? Perhaps she has a better reference? We’ll never know unless she cites it.

Taken as a whole, her meme is no closer to the truth than it was six weeks ago. Some may ask if it really matters. “Who cares if we have 37.2 trillion cells or 100 trillion cells or even 100 billion trillion”. “So what if our thoughts influence us or not.” If this was just a matter of a pedantic argument between some scientists over a coffee one morning,then I’d agree, it wouldn’t be so important. But Dr Leaf claims to be an expert, and more than 100,000 people read her memes on Facebook and many more on Twitter, Instagram, and the various other forms of social media she is connected to. Nearly every one of those people take Dr Leaf at her word. Ultimately the issue is trust.

If Dr Leaf can misreport such a simple, easily sourced fact, and not just once but twice now, then what does that mean for her other factoids and memes that she regularly posts on social media? If Dr Leaf incorrectly says that every thought we think impacts every cell in our body, then hundreds of thousands of people are wasting their mental and physical energy on trying to control their thoughts when it makes no real difference, and if anything might make their mental health worse [2, 3].

This is more than just a pedantic discussion over a trivial fact.  These memes matter to people, and can potentially influence the health and wellbeing of many thousands of lives.

Peter Parker, quoting Voltaire, said, “With great power comes great responsibility.”  Just because Spiderman said it doesn’t diminish the profundity of that statement.  This law of great power applies to Dr Leaf as much as it does to Spiderman.  I hope and pray that she gives this law of great power the consideration it deserves.

References

  1. Pitt, C.E., Hold That Thought: Reappraising the work of Dr Caroline Leaf, 2014 Pitt Medical Trust, Brisbane, Australia, URL http://www.smashwords.com/books/view/466848
  2. Garland, E.L., et al., Thought suppression, impaired regulation of urges, and Addiction-Stroop predict affect-modulated cue-reactivity among alcohol dependent adults. Biol Psychol, 2012. 89(1): 87-93 doi: 10.1016/j.biopsycho.2011.09.010
  3. Kavanagh, D.J., et al., Tests of the elaborated intrusion theory of craving and desire: Features of alcohol craving during treatment for an alcohol disorder. Br J Clin Psychol, 2009. 48(Pt 3): 241-54 doi: 10.1348/014466508X387071

Dr Caroline Leaf and the cart before the horse, take two

Screen Shot 2014-12-01 at 8.23.44 pm

In between her sightseeing in the UK and ballet concerts in the Ukraine, Dr Leaf, communication pathologist and self-titled cognitive neuroscientist, took the time to post some more memorable memes.

Today, Dr Leaf posted, “A chaotic mind filled with thoughts of anxiety, worry, etc. sends out the wrong signal right down to the level of our DNA.”

Hmmm, that one looked familiar … actually, Dr Leaf posted the exact same phrase on the 5th of October this year.  I’m all for recycling, but of renewable resources, not tired ideas.

This meme has been soundly rebuffed before, and the idea that the mind controls our DNA has been thoroughly dismantled.  Reposting it won’t make it any truer.

This meme is better off being put into the trash than the recycling bin.

(For more information on the rebuttal of the mind over matter meme, see also “Hold that thought: Reappraising the work of Dr Caroline Leaf“, “Dr Caroline Leaf: Putting thought in the right place” Part 1 and Part 2, “Dr Caroline Leaf and the matter of mind over genes“, “Dr Caroline Leaf, Dualism, and the Triune Being Hypothesis”, “Dr Caroline Leaf and the Myth of the Blameless Brain” and “Dr Caroline Leaf and the Myth of Mind Domination” just to name a few references).

Dr Caroline Leaf: Putting thought in the right place

Following hard on the heels of her false assumption that our minds control our health, not our genes, and following the same theme, Dr Leaf had this to say today, “Everything is first a thought; the brain is being controlled with EVERY thought you think!”

Dr Caroline Leaf is a communication pathologist and a self-titled cognitive neuroscientist. Reading back through my blogs, this “thought controls the brain / mind controls matter” is a recurrent theme of hers. It is repeated multiple times in her books, like when she writes, “Thoughts influence every decision, word, action and physical reaction we make.” [1: p13] and “Our mind is designed to control the body, of which the brain is a part, not the other way around. Matter does not control us; we control matter through our thinking and choosing” [2: p33] just as a couple of examples.

So how does thought relate to the grand scheme of our brain and it’s processing? Does our thought really control our brain, or is it the other way around. Through all of the reading that I have done on neuroscience, I propose a model of the place of thought in relation to the rest of our brains information processing. It is based on the LIDA model, dual systems models, and other neuroscientific principles and processes.

We’ve all heard the phrase, “It’s just the tip of the iceberg.” It comes from the fact that icebergs are made of fresh water, which is nine-tenths less dense than seawater. As a result, ten percent of an iceberg sits above the waters surface with most of it hiding beneath.

The information processing of our brains is much the same. We may be aware of our conscious stream of thought, but there is a lot going on under the surface that makes our thoughts what they are, even though we can’t see the process underneath.

What’s going on under the surface is a complex interplay of our genes and their expression which controls the structure and function of our brains, which effects how we perceive information, how we process that information and combine it into our memories of the past, predictions of the future, and even the further perception of the present [3].

CAP v2.1.2
Genes, epigenetics and the environment
We start with the most fundamental level of our biological system, which is genetics. It becomes clear from looking at any textbook of biological sciences that genes are fundamental to who we are. From the simplest bacteria, fungi, protozoans and parasites, through to all plants, all animals and all of human kind – EVERY living thing has DNA. DNA is what defines life in the broadest sense.

Proteins are responsible for the size, shape and operation of the cell. They make each tissue structurally and functionally different, but still work together in a highly precise electrochemical synchrony. But ultimately, it’s our genes that hold all of the instructions to make every one of the proteins within our cells. Without our genes, we would be nothing more than a salty soup of random amino acids.

Epigenetics and the environment contribute to the way genes are expressed. Epigenetics are “tags” on the strand of DNA that act to promote or silence the expression of certain genes (I discuss this in more detail in chapter 12 of my book, https://www.smashwords.com/books/view/466848). Environmental factors (the components that make up the world external to our bodies) can influence genes and epigenetic markers. The environment can cause genetic mutations or new epigenetic marks that change the function of a particular gene, and depending on which cell they effect (a very active embryonic cell or a quiet adult cell) will largely determine the eventual outcome. The environment is more influential to our genetic expression than epigenetics.

Still, on average only about 25% of the expression of a complex trait is related to environmental factors. So while the environment is important, it is still outdone 3:1 by our genome.

Yes, epigenetics and the environment are important, but they influence, not control, the genome.

Perception
We live in a sensory world. The five senses are vital in providing the input we need for our brain to understand the world and meaningfully interact with it.

Different organs are needed to translate the optical, chemical or mechanical signals into electrical signals. Different parts of our brain then interpret these signals and their patterns.

Our genes significantly influence this process. For example, if someone is born with red-green colour blindness then how he or she interprets the world will always be subtly different to someone with normal vision. Or a person born with congenital deafness will always interpret his or her environment in a different way to someone with full hearing. I’ve highlighted these two conditions because they provide stark examples to help demonstrate the point, but there are many unique genetic expressions in each of the five senses that subtly alter the way each of us perceives the world around us.

So while we may all have the same photons of light hitting our retinas, or the same pressure waves of sound reaching our ears or touch on our skin, how our brains receive that information is slightly different for every individual. The information from the outside world is received by our sensory organs, but it is perceived by our brain, and even small differences in perception can have a big impact on the rest of the system.

Personality
Personality is “the combination of characteristics or qualities that form an individual’s distinctive character” [4]. Formally speaking, personality is, “defined as constitutionally based tendencies in thoughts, behaviors, and emotions that surface early in life, are relatively stable and follow intrinsic paths of development basically independent of environmental influences.” [5]

Professor Gregg Henriques explained it well in Psychology Today, “Personality traits are longstanding patterns of thoughts, feelings, and actions which tend to stabilize in adulthood and remain relatively fixed. There are five broad trait domains, one of which is labeled Neuroticism, and it generally corresponds to the sensitivity of the negative affect system, where a person high in Neuroticism is someone who is a worrier, easily upset, often down or irritable, and demonstrates high emotional reactivity to stress.” [6] The other four personality types are Extraversion, Agreeableness, Conscientiousness, and Openness to Experience.

Gene x environment studies suggest that personality is highly heritable, with up to 60% of personality influenced by genetics [7], predominantly through genes involved in the serotonin [8] and dopamine systems [9, 10]. The “non-shared environment” (influences outside of the home environment) contributes heavily to the remainder [11, 12].

Personality is like a filter for a camera lens, shaping the awareness of our emotional state for better or worse, thus influencing the flow on to our feelings (the awareness of our emotions), our thoughts, and our actions.

Physiology
Watkins describes physiology as streams of data that are provided from the different parts of your body, like the heart rate, your breathing rate, the oxygen in your blood, the position of your joints, the movement of your joints, even the filling of your bladder telling you that you need a break soon.

All of these signals are constantly being generated, and collated in different parts of the brain. Some researchers consider them positive and negative depending on the data stream and the signal its providing. They coalesce into emotion [13].

Emotion
According to Watkins, “emotion” is the sum of all the data streams of physiology, or what he described as “E-MOTIONEnergy in MOTION.” [13] In this context, think of emotion as a bulls-eye spirit-level of our body systems. The different forces of our physiology change the “level” constantly in different directions. Emotion is the bubble that marks the central point, telling us how far out of balance we are.

In the interest of full disclosure, I should mention that although emotion is a familiar concept, the work of literally thousands of brilliant minds has brought us no closer to a scientifically validated definition of the word “emotion”. Some psychologists and researchers consider it vague and unscientific, and would prefer that it not be used altogether [14].

I’ve retained it because I think it’s a well-recognised word that conceptually describes the balance of physiological forces.

Feelings
“Feelings” are the perception of emotion.

I discussed earlier in the chapter that what we perceive is different to what we “see” because the subtle genetic differences in our eyes and brains causes the information to be processed differently between individuals. The same applies to the perception of our emotion.

As I wrote earlier, personality is largely determined by our genetics with contributions from our environment [11, 12]. The emotional signal is filtered by our personality to give rise to our feelings. Classically, an optimistic personality is going to bias the emotional input in a positive, adaptive way while a pessimist or neurotic is going to bias the emotional signal in a maladaptive way

That’s not to say that an optimist can’t have depressed feelings, or a neurotic can’t have happy feelings. In the same way that a coloured lens will allow a lot of light through but filter certain wavelengths out, most of our emotional state of being will come through the filter of our personality but the feelings will be subtly biased one way or another.

Executive Functions
Executive function of the brain is defined as a complex cognitive process requiring the co-ordination of several sub-processes to achieve a particular goal [15]. These sub-processes can be variable but include working memory, attention, goal setting, maintaining and monitoring of goal directed action and action inhibition. In order to achieve these goals, the brain requires flexibility and coordination of a number of networks and lobes, although mainly the prefrontal cortex, parietal cortex, anterior cingulate and basal ganglia, and the while matter tracts that connect them.

Executive functions process the incoming information and decide on what goals are best given the context, then plan the goals, execute them to the motor cortices, and monitor the action. Research work from Marien et al [16] demonstrates that unconscious/implicit goals can divert resources away from conscious goals especially if it is emotionally salient or otherwise strongly related. They also confirm that conscious awareness is not necessary for executive function but that implicit goals can be formed and executed without conscious involvement.

Thoughts
Thoughts are essentially a stream of data projected into our conscious space. Baars [17, 18] noted that the conscious broadcast comes into working memory which then engages a wider area of the cerebral cortex necessary to most efficiently process the information signal. We perceive thought most commonly as either pictures or sounds in our head (“the inner monologue”), which corresponds to the slave systems of working memory. When you “see” an image in your mind, that’s the visuospatial sketchpad. When you listen to your inner monologue, that’s your phonological loop. When a song gets stuck in your head, that’s your phonological loop as well, but on repeat mode.

There is another slave system that Baddeley included in his model of working memory called the episodic buffer, “which binds together complex information from multiple sources and modalities. Together with the ability to create and manipulate novel representations, it creates a mental modeling space that enables the consideration of possible outcomes, hence providing the basis for planning future action.” [19]

Deep thinking is a projection from your brains executive systems (attention or the default mode network) to the central executive of working memory, which then recalls the relevant information from long-term memory and directs the information through the various parts of the slave systems of working memory to process the complex details involved. For example, visualizing a complex scene of a mountain stream in your mind would involve the executive brain directing the central executive of working memory to recall information about mountains and streams and associated details, and project them into the visuospatial sketchpad and phonological loop and combine them via the episodic buffer. The episodic buffer could also manipulate the scene if required to create plans, or think about the scene in new or unexpected ways (like imagining an elephant riding a bicycle along the riverbank).

Even though the scene appears as one continuous episode, it is actually broken up into multiple cognitive cycles, in the same way that images in a movie appear to be moving, but are really just multiple still frames played in sequence.

Action
Action is the final step in the process, the output, our tangible behaviour

Our behaviour is not the direct result of conscious thought, or our will (as considered in the sense of our conscious will).

We discussed this before when we talked about our choices in chapter 1. There are two main pathways that lead from sensory input to tangible behaviour – various automated pathways that take input from the thalamus, deep in the brain, and sent to motor circuits in the supplementary motor area and motor cortex of the brain. These can be anything from evasive “reflex” actions[1] to rehearsed, habituated motor movements, like driving. Then there is the second pathway, coming from the executive areas of our brain, that plan out options for action, which are reviewed by the pre-supplemental motor area and the default mode network.

This second pathway is amenable to conscious awareness. Like thought, the projection of different options for action into our consciousness helps to engage a wider area of cerebral cortex to process the data. Most of the possible plans for action have already been rejected by the implicit processing of our executive brain before consciousness is brought in to help. Once an option has been selected, the action is sent to the pre-supplementary motor area, the supplementary motor area, the basal ganglia and finally the motor cortex.

According to the model proposed by Bonn [20], the conscious network has some feedback from the control network of our brain, providing real time context to actions about to be executed, and a veto function, stopping some actions at the last minute before they are carried out. This is largely a function of the basal ganglia [21], with some assistance from working memory.

So as you can see, according to the CAP model, conscious thoughts are one link of a longer chain of neurological functions between stimulus and action – simply one cog in the machine. Thoughts are dependent on a number of processes that are both genetically and environmentally determined, beyond our conscious control. It’s simply wrong to assume that thoughts control the brain.

Dr Leaf is welcome to her opinion, but it is in contradiction to the overwhelming majority of neuroscientific knowledge

References

  1. Leaf, C., Who Switched Off My Brain? Controlling toxic thoughts and emotions. 2nd ed. 2009, Inprov, Ltd, Southlake, TX, USA:
  2. Leaf, C.M., Switch On Your Brain : The Key to Peak Happiness, Thinking, and Health. 2013, Baker Books, Grand Rapids, Michigan:
  3. Hao, X., et al., Individual differences in brain structure and resting brain function underlie cognitive styles: evidence from the embedded figures test. PLoS One, 2013. 8(12): e78089 doi: 10.1371/journal.pone.0078089
  4. Oxford Dictionary of English – 3rd Edition, 2010, Oxford University Press: Oxford, UK.
  5. De Pauw, S.S., et al., How temperament and personality contribute to the maladjustment of children with autism. J Autism Dev Disord, 2011. 41(2): 196-212 doi: 10.1007/s10803-010-1043-6
  6. Henriques, G. (When) Are You Neurotic? Theory of Knowledge: Psychology Today; 2012, 23 Nov 2012 [cited 2013 23 Nov 2012]; Available from: http://www.psychologytoday.com/blog/theory-knowledge/201211/when-are-you-neurotic.
  7. Vinkhuyzen, A.A., et al., Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion. Transl Psychiatry, 2012. 2: e102 doi: 10.1038/tp.2012.27
  8. Caspi, A., et al., Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry, 2010. 167(5): 509-27 doi: 10.1176/appi.ajp.2010.09101452
  9. Felten, A., et al., Genetically determined dopamine availability predicts disposition for depression. Brain Behav, 2011. 1(2): 109-18 doi: 10.1002/brb3.20
  10. Chen, C., et al., Contributions of dopamine-related genes and environmental factors to highly sensitive personality: a multi-step neuronal system-level approach. PLoS One, 2011. 6(7): e21636 doi: 10.1371/journal.pone.0021636
  11. Krueger, R.F., et al., The heritability of personality is not always 50%: gene-environment interactions and correlations between personality and parenting. J Pers, 2008. 76(6): 1485-522 doi: 10.1111/j.1467-6494.2008.00529.x
  12. Johnson, W., et al., Beyond Heritability: Twin Studies in Behavioral Research. Curr Dir Psychol Sci, 2010. 18(4): 217-20 doi: 10.1111/j.1467-8721.2009.01639.x
  13. Watkins, A. Being brilliant every single day – Part 1. 2012 [cited 2 March 2012]; Available from: http://www.youtube.com/watch?v=q06YIWCR2Js.
  14. Dixon, T., “Emotion”: The History of a Keyword in Crisis. Emot Rev, 2012. 4(4): 338-44 doi: 10.1177/1754073912445814
  15. Elliott, R., Executive functions and their disorders Imaging in clinical neuroscience. British Medical Bulletin, 2003. 65(1): 49-59
  16. Marien, H., et al., Unconscious goal activation and the hijacking of the executive function. J Pers Soc Psychol, 2012. 103(3): 399-415 doi: 10.1037/a0028955
  17. Baars, B.J. and Franklin, S., How conscious experience and working memory interact. Trends Cogn Sci, 2003. 7(4): 166-72 http://www.ncbi.nlm.nih.gov/pubmed/12691765 ; http://bit.ly/1a3ytQT
  18. Baars, B.J., Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in brain research, 2005. 150: 45-53
  19. Repovs, G. and Baddeley, A., The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience, 2006. 139(1): 5-21 doi: 10.1016/j.neuroscience.2005.12.061
  20. Bonn, G.B., Re-conceptualizing free will for the 21st century: acting independently with a limited role for consciousness. Front Psychol, 2013. 4: 920 doi: 10.3389/fpsyg.2013.00920
  21. Beste, C., et al., Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia, 2010. 48(2): 366-73 doi: 10.1016/j.neuropsychologia.2009.09.023

[1] We often describe rapid unconscious movements, especially to evade danger or to protect ourselves, as “reflexes”. Medically speaking, a true reflex is a spinal reflex, like the knee-jerk reflex. When a doctor taps the knee with the special hammer, the sudden stretch of the tendon passes a nerve impulse to the spinal cord, which is then passed to the muscle, which makes it contract. A true reflex doesn’t go to the brain at all.

Dr Caroline Leaf and the matter of mind over genes

Screen Shot 2014-11-07 at 8.13.45 pm

I think I might have to throw away my genetics textbook.

I was always taught that genes were the main driver behind health and disease, and I always thought it was a pretty good theory.

But not according to Dr Caroline Leaf, communication pathologist and self-titled cognitive neuroscientist, who said on her social media feeds today, “Our health is not controlled by genetics – our health is controlled by our mind.”

Taking her statement at face value, she appears to be saying that genes have nothing to do with our health. Dr Leaf has made some asinine statements in the past, but to suggest that genes are irrelevant to human health seemed so stupid that no one in their right mind would suggest such a thing.

Perhaps I was taking her statement the wrong way? I wanted to make sure I didn’t jump to any rash conclusions about Dr Leaf’s statement, so I pondered it at length. Could she be referring to ‘control’ in the absolute sense? How much control do genes have on our health? What about the mind?

After deliberating for a while, I still came to the conclusion that Dr Leaf’s statement was nonsense.

Unfortunately, Dr Leaf’s statement is, like so many of her previous Facebook memes, so vague as to be misleading. The meaning of ‘health’ and ‘controlled’ could be taken so many ways … which part of our health? How much regulation constitutes ‘control’? What about genetics?

Looking at her statement in more depth, it becomes clear that no matter which way Dr Leaf meant it, it’s still wrong. For example, all of human health is controlled, in part, by genetics. That’s because life itself is controlled by genetics. The human genome provides a blueprint for the construction of all of the proteins in all of the cells in our entire body. The expression of those genes determines exactly how our body will run. If the genes are wrong, if the translation of the gene code into a protein is wrong, or if too much or too little of a protein is made, all determines whether our body is functioning at its optimum level or not.

The stimulus for the expression of our genes is influenced by the environment in which we live. If I go out into the sun a lot, the UV light triggers my skin cells to make the protein melanin, which makes my skin go darker and helps to provide some protection against the damaging effects of the UV light.

While the environment plays a part of the expression of some genes, it’s wrong to say that genetics doesn’t control the process. If I go into the sun too much, I risk developing a melanoma, because the sun damages the genes in some of my skin cells, causing them to grow without control.

Genes are still responsible for the disease itself. Sometimes the trigger is from the environment, sometimes it’s not. There are some people with genes for melanoma who don’t need an environmental trigger, because they develop melanoma on skin that’s exposed to very little UV light, like the genital skin.

So fundamentally, even taking the environment into account, our health is controlled by our genetics.

The other part of Dr Leaf’s meme is also wrong. Our health is not controlled by our mind. Our genes are influenced by “the environment”, which according to the seminal paper by Ottman, “The environmental risk factor can be an exposure, either physical (e.g., radiation, temperature), chemical (e.g., polycyclic aromatic hydrocarbons), or biological (e.g., a virus); a behavior pattern (e.g., late age at first pregnancy); or a “life event” (e.g., job loss, injury). This is not intended as an exhaustive taxonomy of risk factors, but indicates as broad a definition as possible of environmental exposures.” [1]

Even if one considers the mind as part of the sub classification of “a behavior pattern”, it’s still pretty clear that most of the factors that make up our environment are not related to our mind at all but are related to the external world, of which we have minimal or no control over. Sure, we make choices, but our choices aren’t truly free. They’re constrained by the environment in which we find ourselves. In the same way, our mind may have some tiny influence on our health, but only insofar as our environment and our genes will allow.

When it all boils down, this meme of Dr Leaf’s is rested on her foundational presumption that our mind can control matter, a very strong theme throughout her most recent book [2], but which is still preposterous. Our thoughts are simply a function of our brain, which is in turn determined by the function of our nerve cells, which is in turn a function of our genes and their expression.

Our mind doesn’t control matter. Matter controls our mind.

I can keep my genetics textbooks after all.

References

  1. Ottman, R., Gene-environment interaction: definitions and study designs. Prev Med, 1996. 25(6): 764-70 http://www.ncbi.nlm.nih.gov/pubmed/8936580
  2. Leaf, C.M., Switch On Your Brain : The Key to Peak Happiness, Thinking, and Health. 2013, Baker Books, Grand Rapids, Michigan:

Understanding Thought – Part 1

WHAT IS THOUGHT?

We’re all familiar with thought, to be sure, just like we’re familiar with our own bodies. But just because we know our own bodies doesn’t make us all doctors. In the same way, we might know our own thoughts well, but that doesn’t make us experts in the science of thought.

But understanding thought is important. If we don’t know what thoughts are, then it’s very easy to be conned into believing the myriad of myths about thought perpetuated about them by every pop-psychologist and B-grade life coach.

This series of blogs is taken from my book Hold That Thought: Reappraising the work of Dr Caroline Leaf. We will look at some basic neurobiology first, then look at the neurobiology of thought itself. We’ll discuss some psychological models of our thought processing, and finally we’ll discuss the common brain states and functions that are usually confused with thought.

Neurobiology 101

The nerve cell

At the most fundamental level of our thought process is the nerve cell, also called a neuron. Nerve cells, like all cells in the body, have a nucleus containing the genetic material. The nucleus is surrounded by cytoplasm, a watery chemical soup that contains the functional proteins that make the cell run. A thin lipid layer called the cell membrane envelopes the nucleus and cytoplasm. The cell membrane contains important protein structures such as receptors that help the cell receive signals from other cells, and ion channels, which help the cell regulate its internal chemistry.

Compared to other cells, nerve cells have three unique structures that help them do their job. First are dendrites, which are spiny branches that protrude from the main cell body, which receive the signals from other nerve cells. Leading away from the cell body is a long thin tube called an axon which helps carry electrical signal from the dendrites, down to the some tentacle-like processes that end in little pods. These pods, called the terminal buttons of the axon, and then convey the electrical signal to another nerve cell by directing a burst of chemicals towards the dendrites of the next nerve cell in the chain.

In order for the signal to be successfully passed from the first nerve cell to the second, it must successfully traverse a small space called the synapse.

The synapse

Despite being very close to each other, no nerve cell touches another. Instead, the spray of chemicals that’s released from the terminal button of the axon floats across a space of about 20-40nM (a nanometre is one billionth of a metre).

There are a number of different chemicals that traverse synapses, but each terminal button has its own particular one. The most well known are serotonin, noradrenaline and dopamine.

If the signal from the first nerve is strong enough, then a critical amount of the chemical is released and will make it across the gap to the dendrites of the second nerve cell on the other side. The chemical interacts with specific receptors on the new dendrites, which cause them to open up to certain salts like sodium and potassium. As sodium and potassium move in and out of the cell, a new electrical current if formed in the second nerve cell, passing the signal down the line.

To prevent the chemicals in the synapse from over-stimulating the second nerve cell, enzymes breakdown the chemicals to clear the space before the next signal comes past.

Nerve pathways

Combining nerve cells and synapses together creates a nerve pathway, where the input signal is received by specialised nerve endings and is transmitted down the nerve cell across a synapse to the next nerve cell, across the next synapse to the next nerve cell, and on and on until the signal has reached the destination for the output of that signal.

And that’s it. The entire nervous system is just a combination of nerve cells and the synapses between them.

What gives the nervous system and brain the near-infinite flexibility, and air of mystery, is that there are eighty-six billion nerve cells in the average adult (male) brain. Each nerve cell has hundreds to thousands of synapses. It’s estimated that there are about 0.15 quadrillion (that’s 150,000,000,000,000) synapses throughout the average brain [1]. And that’s not including the nerve cells and synapses in the spinal cord, autonomic nervous system and throughout the body. Each of these cells and synapses connect in multiple directions and levels, and transmit signals through the sum of the exciting or inhibiting influences they receive from, and pass on to, other nerve cells.

Single nerve cells may have the appearances of trees with their axon trunks and dendritic branches. But altogether, the billions of connections would more resemble a box of cobwebs.

Higher order brain structures

But unlike a box of cobwebs, the brain has precise organisation to the myriad of connections. These areas can be defined either by their structure, or by their function.

Structurally, there are areas in the brain that are dominated by nerve cell bodies, formed into a little cluster, called a nucleus (different from the nucleus of each cell). Then there are groups of axons bundled together, called a tract, which behave like a data cable for your computer. Nuclei process multiple sources of signal and refine them. The refined signals are sent into the appropriate tract to be transmitted to either another set of nuclei for further refinement, or to distant structures to carry out their effect. The axons of the nerve cells that make up the tracts are usually covered in a thick white material called myelin. Myelin acts like insulation on a wire, improving the speed and accuracy of the communicated signal. Parts of the brains with lots of myelinated cells are described as “white matter”. The nuclei and the cerebral cortex (the outer covering of the brain) are unmyelinated cells, and are referred to as “grey matter”.

On a functional level, the brain is divided into parts depending on what information is processed, and how it gets processed. For example, the cerebral cortex is divided into primary areas for the senses and for motor functions, secondary areas and tertiary association areas. The primary sensory areas detect specific sensations, whereas the secondary areas make sense out of the signals in the primary areas. Association areas receive and analyze signals simultaneously from multiple regions of both the motor and sensory areas, as well as from the deeper parts of the brain [2]. The frontal lobe, and specifically pre-frontal cortex, is responsible for higher brain functions such as working memory, planning, decision making, executive attention and inhibitory control [3].

Everything our senses detect is essentially deconstructed, processed then reconstructed by our brains. For example, when reading this page, the image is decoded by our retina and sent through a number of pathways to finally reach the primary visual cortex at the back of our brain. The primary visual cortex has 6 layers of nerve cells which simultaneously encode the various aspects of the image (especially colour, intensity and movement of the signals) and this information is sent to the secondary association areas that detect patterns, both basic (lines are straight, curved, angled) and complex (two diagonal intersecting lines form an ‘x’). One part of the secondary association areas in the visual cortex (the Angular Gyrus) processes these patterns further into the patterns of written words. The information on the various patterns that were discerned by the secondary association areas then get sent to the tertiary association area for the senses where those visual patterns are combined with patterns processed from other sensory areas (hearing, touch and internal body sensations) to form a complex pattern of multimodal association [2]. In the case of reading, the tertiary association area allows comprehension of the written words that were previously only recognised as words by the secondary association areas.

In the recent decades, with the widespread adoption of non-invasive methods of studying the active living brain such as PET scanning and fMRI, researchers have discovered that rather than discrete parts of the brain lighting up with a specific task, entire networks involving multiple brain regions are activated. This has lead to the paradigm of neurocognitive networks, in which the brain is made up of multiple interconnected networks that “are dynamic entities that exist and evolve on multiple temporal as well as spatial scales” and “by virtue of both their anatomical and functional architectures, as well as the dynamics manifested through these architectures, large-scale network function underlies all cognitive ability.” [4]

Emotions and feelings

Emotions are a difficult concept to define. Despite being studied as a concept for more than a century, the definition of what constitutes an emotion remains elusive. Some academics and researchers believe that the term is so ambiguous that it’s useless to science and should be discarded [5].

I’ll discuss emotions further in chapter 2, but for now, it’s easiest to think of our emotional state as the sum total of our different physiological systems, and feelings are the awareness, or the perception of our emotional state.

Different parts of the brain are responsible for the awareness of these feelings. The amygdala is often considered the seat of our fears, the anterior insula is responsible for the feeling of disgust, and the orbitofrontal and anterior cingulate cortex are involved in a broad range of different emotions [6].

Different emotional states are linked with different neurotransmitters within the brain. For example, a predisposition to anxiety is often linked to variations in the genes for serotonin transport [7] while positive and negative affect (“joy / sadness”) are linked to the dopaminergic system [8].

Memories

Memories, like thoughts, are something that we’re all familiar with in our own way.

Memory is quite complicated. For a start, there’s more than one form of memory. You’ve probably heard of short term and long term memory. Short term memory is further thought of as sensory memory and working memory. Long term memory is divided into semantic and episodic memory. Memory is also classified as either declarative memory, also called explicit memory, and nondeclarative memory, also called implicit memory.

Squire and Wixted explain, “Nondeclarative memory is neither true nor false. It is dispositional and is expressed through performance rather than recollection. These forms of memory provide for myriad unconscious ways of responding to the world. In no small part, by virtue of the unconscious status of the nondeclarative forms of memory, they create some of the mystery of human experience. Here arise the dispositions, habits, and preferences that are inaccessible to conscious recollection but that nevertheless are shaped by past events, influence our behavior and mental life, and are an important part of who we are.” [9]

On the other hand, declarative memory “is the kind of memory that is referred to when the term memory is used in everyday language. Declarative memory allows remembered material to be compared and contrasted. The stored representations are flexible, accessible to awareness, and can guide performance in a variety of contexts. Declarative memory is representational. It provides a way of modeling the external world, and it is either true or false.” [9]

Working memory is a central part of the memory model. Information from feelings, stored memories and actions all converge in working memory. The model of working memory initially proposed by Baddeley involves a central executive, “a control system of limited attentional capacity that is responsible for the manipulation of information within working memory and for controlling two subsidiary storage systems: a phonological loop and a visuospatial sketchpad.”[10] Baddeley later added a third subsidiary system, the episodic buffer, “a limited capacity store that is capable of multi-dimensional coding, and that allows the binding of information to create integrated episodes.” [10]

Working memory is known to be distinct from other longer term memories that are dependent on part of the brain called the hippocampus, because patients with severe damage to the hippocampus can remember a small amount of information for a short time, but are not able to push that information into longer term memory functions to retain that information. Information in working memory doesn’t last for any more than a few minutes [9].

So, there are many forms of memory that are important to our lives and influence our behaviour that are “inaccessible to conscious recollection”. But even declarative memory, which is accessible to thought, doesn’t actually make up the thought itself. Memories are stored representations.

When memories are formed or retrieved, the information is processed in chunks. As Byrne pointed out, “We like to think that memory is similar to taking a photograph and placing that photograph into a filing cabinet drawer to be withdrawn later (recalled) as the ‘memory’ exactly the way it was placed there originally (stored). But memory is more like taking a picture and tearing it up into small pieces and putting the pieces in different drawers. The memory is then recalled by reconstructing the memory from the individual fragments of the memory.” [11] Recalling the original memory is an inaccurate process, because sometimes these pieces of the memory are lost, faded or mixed up with another [12]. This is why what we perceive and what we recall are often two different things entirely.

Why do we have memory then, if it’s so flawed at recalling information? Because memory is less about recalling the past, and more about imagining and planning the future. As Schacter writes, “The constructive episodic simulation hypothesis states that a critical function of a constructive memory system is to make information available in a flexible manner for simulation of future events. Specifically, the hypothesis holds that past and future events draw on similar information and rely on similar underlying processes, and that the episodic memory system supports the construction of future events by extracting and recombining stored information into a simulation of a novel event. While this adaptive function allows past information to be used flexibly when simulating alternative future scenarios, the flexibility of memory may also result in vulnerability to imagination-induced memory errors, where imaginary events are confused with actual events.” [13]

References

  1. Sukel, K. The Synapse – A Primer. 2013 [cited 2013, 28/06/2013]; Available from: http://www.dana.org/media/detail.aspx?id=31294.
  2. Hall, J.E. and Guyton, A.C., Guyton and Hall textbook of medical physiology. 12th ed. 2011, Saunders/Elsevier, Philadelphia, Pa.:
  3. Stuss, D.T. and Knight, R.T., Principles of frontal lobe function. 2nd ed. 2013, Oxford University Press, Oxford ; New York:
  4. Meehan, T.P. and Bressler, S.L., Neurocognitive networks: findings, models, and theory. Neurosci Biobehav Rev, 2012. 36(10): 2232-47 doi: 10.1016/j.neubiorev.2012.08.002
  5. Dixon, T., “Emotion”: The History of a Keyword in Crisis. Emot Rev, 2012. 4(4): 338-44 doi: 10.1177/1754073912445814
  6. Tamietto, M. and de Gelder, B., Neural bases of the non-conscious perception of emotional signals. Nat Rev Neurosci, 2010. 11(10): 697-709 doi: 10.1038/nrn2889
  7. Caspi, A., et al., Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry, 2010. 167(5): 509-27 doi: 10.1176/appi.ajp.2010.09101452
  8. Felten, A., et al., Genetically determined dopamine availability predicts disposition for depression. Brain Behav, 2011. 1(2): 109-18 doi: 10.1002/brb3.20
  9. Squire, L.R. and Wixted, J.T., The cognitive neuroscience of human memory since H.M. Annu Rev Neurosci, 2011. 34: 259-88 doi: 10.1146/annurev-neuro-061010-113720
  10. Repovs, G. and Baddeley, A., The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience, 2006. 139(1): 5-21 doi: 10.1016/j.neuroscience.2005.12.061
  11. Byrne, J.H. Learning and Memory (Section 4, Chapter 7). Neuroscience Online – an electronic textbook for the neurosciences 2013 [cited 2014, Jan 3]; Available from: http://neuroscience.uth.tmc.edu/s4/chapter07.html.
  12. Bonn, G.B., Re-conceptualizing free will for the 21st century: acting independently with a limited role for consciousness. Front Psychol, 2013. 4: 920 doi: 10.3389/fpsyg.2013.00920
  13. Schacter, D.L., et al., The future of memory: remembering, imagining, and the brain. Neuron, 2012. 76(4): 677-94 doi: 10.1016/j.neuron.2012.11.001